
gratopy
Release 0.1.0

Kristian Bredies, Richard Huber

Aug 23, 2021

CONTENTS:

1 Installation 3
1.1 Installation in Python . 3
1.2 Testing correct installation . 3
1.3 Requirements . 4

2 Getting started 5
2.1 Basic principles of gratopy . 5
2.2 First example: Radon transform . 8
2.3 Second example: Fanbeam transform . 11

3 Test examples 15
3.1 Radon transform . 15
3.2 Fanbeam transform . 16

4 Function reference 19
4.1 Definition of geometry . 19
4.2 Transforms . 22
4.3 Solvers . 23
4.4 Data generation . 25
4.5 Internal functions . 26

5 Acknowledgements 31
5.1 Authors, publications and funding . 31
5.2 Used data sets and code . 31
5.3 License . 32

6 Indices and tables 33

Bibliography 35

Python Module Index 37

Index 39

i

ii

gratopy, Release 0.1.0

The gratopy (Graz accelerated tomographic projections for Python) toolbox is a Python3 software package for the effi-
cient and high-quality computation of Radon transforms, fanbeam transforms as well as the associated backprojections.
The included operators are based on pixel-driven projection methods which were shown to possess favorable approxi-
mation properties. The toolbox offers a powerful parallel OpenCL/GPU implementation which admits high execution
speed and allows for seamless integration into PyOpenCL. Gratopy can efficiently be combined with other PyOpenCL
code and is well-suited for the development of iterative tomographic reconstruction approaches, in particular, for those
involving optimization algorithms.

Highlights

• Easy-to-use tomographic projection toolbox.

• High-quality 2D projection operators.

• Fast projection due to custom OpenCL/GPU implementation.

• Seamless integration into PyOpenCL.

• Basic iterative reconstruction schemes included (Landweber, CG, total variation).

• Comprehensive documentation, tests and example code.

Table 1: The fanbeam projection of a walnut and gratopy’s Landweber
and total variation reconstructions (from left to right).

CONTENTS: 1

https://github.com/kbredies/gratopy/
https://epubs.siam.org/doi/abs/10.1137/20M1326635
https://epubs.siam.org/doi/abs/10.1137/20M1326635
https://documen.tician.de/pyopencl/

gratopy, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

Gratopy supports common Python package distribution frameworks such as setuptools or pip.

1.1 Installation in Python

The gratopy toolbox can easily be installed using pip

pip install gratopy

Alternatively, the release can be downloaded from https://github.com/kbredies/gratopy and installed (after unpacking
inside the corresponding folder) via

pip install .

Also, setuptools can be used for installation via

python setup.py install

In case installation fails due to the dependency on other packages (see requirements.txt), it is advised to install the
packages by hand before retrying to install gratopy. In particular, the PyOpenCL package may require some additional
effort as it depends on additional drivers and C libraries which might needed to be installed by hand. We refer to the
documentation of PyOpenCL.

1.2 Testing correct installation

The release archive (or GitHub repository) includes a tests folder which contains a variety of tests that allow to
observe visually and numerically whether gratopy was installed correctly and works as desired.

One can perform these tests by using, for instance, pytest

pytest

or nose

nosetests

In case multiple OpenCL devices are registered in pyopencl, but the default device is not suitably configured for the
tests to work, one might need to choose the context to use manually. This a-priori choice of context to use in pyopencl
can be done via

3

https://pypi.org/project/setuptools/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://github.com/kbredies/gratopy
https://pypi.org/project/setuptools/
https://github.com/kbredies/gratopy/blob/master/requirements.txt
https://documen.tician.de/pyopencl/
https://pypi.org/project/pytest/
https://pypi.org/project/nose/
https://documen.tician.de/pyopencl/runtime.html#module-pyopencl
https://documen.tician.de/pyopencl/runtime.html#module-pyopencl

gratopy, Release 0.1.0

export PYOPENCL_CTX=<context_number>

The context number can, for instance, be determined in Python by

import pyopencl
pyopencl.create_some_context()

following the interactive instructions and observing the console output.

By default, the plots of the tests are disabled, but can be activated, e.g., by

export GRATOPY_TEST_PLOT=true

Moreover, the Getting started guide contains two example code segments which can be executed to quickly check that
no errors occur and the output is as desired.

1.3 Requirements

The requirements.txt file specifies Python packages required for the use of gratopy. Amongst them the most relevant
are

• pyopencl>=2019.1

• numpy>=1.17.0

• scipy>=1.3.0

• matplotlib>=3.2.0

• Pillow>=6.0.0

• Mako>=1.1.0

Most users aiming for scientific computing applications will probably have these packages already installed as they can
be considered standard for numerical computations in Python. Let us again point out that correctly installing PyOpenCL
might take some time and effort though, as dependent on the used hardware/GPU, the installation of suitable drivers
might be required, see, for instance, https://documen.tician.de/pyopencl/.

4 Chapter 1. Installation

https://github.com/kbredies/gratopy/blob/master/requirements.txt
https://pypi.org/project/pyopencl/
https://pypi.org/project/numpy/
https://pypi.org/project/scipy/
https://pypi.org/project/matplotlib/
https://pypi.org/project/Pillow/
https://pypi.org/project/Mako/
https://documen.tician.de/pyopencl/

CHAPTER

TWO

GETTING STARTED

2.1 Basic principles of gratopy

We start by explaining some recurring relevant quantities and concepts in gratopy, in particular the
ProjectionSettings class as well as the use of images and sinograms and the connection of forward projection
to backprojection in the context of gratopy.

2.1.1 ProjectionSettings

The cornerstone of the gratopy toolbox is formed by the gratopy.ProjectionSettings class, which defines the con-
sidered geometry, collects all relevant information to create the OpenCL kernels, and precomputes and saves relevant
quantities. Thus, virtually all functions of gratopy require an object of this class, usually referred to as projectionset-
ting. In particular, gratopy offers the implementation for two different geometric settings, the parallel beam and the
fanbeam setting.

The geometry of the parallel beam setting is mainly defined by the image_width – the physical diameter of the object
in question in arbitrary units, e.g., 3 corresponding to 3cm (or m, etc.) – and the detector_width – the physical width
of the detector in the same unit –, both parameters of a projectionsetting. For most standard examples for the Radon
transform, these parameters coincide, i.e., the detector is exactly as wide as the diameter of the imaged object, and thus,
captures all rays passing through the object.

The fanbeam setting additionally requires RE – the physical distance from the source to the center of rotation – and
R – the physical distance from the source to the detector – to define the geometry, see the figures below.

Moreover, the projection requires discretization parameters, i.e., the shape of the image to project and the number
of detector pixels to map to. Note that these transforms are scaling-invariant in the sense that rescaling all physical
quantities by the same factor creates operators which are rescaled versions of the original ones. On the other hand,
changing the number of pixels of the image or the detector leaves the physical system unchanged and simply reflects a
finer/coarser discretization.

The angular range for the parallel beam setting is [0, 𝜋[, while for the fanbeam setting, it is [0, 2𝜋[. By default, it is
assumed that the given angles completely partition the angular range. In case this is not desired, a limited-angle situ-
ation can be considered by adapting the angles and angle_weights parameters of gratopy.ProjectionSettings,
impacting, for instance, the backprojection operator. Note also that the projections considered are rotation-invariant in
the sense, that projection of a rotated image yields a sinogram which is translated in the angular dimension.

Note that the angles are measured (counterclockwise) from the positive x axis and reflect the projection-direction. The
positive detector-direction is the clockwise rotation of the projection-direction by 𝜋

2 .

5

gratopy, Release 0.1.0

Geometry of the parallel beam setting.

Geometry of the fanbeam setting.

The main functions of gratopy are forwardprojection and backprojection, which use a projectionsetting as
the basis for computation and allow to project an image img onto a sinogram sino and to backproject sino onto img,
respectively. Next, we describe how to use and interpret images and sinograms in gratopy.

6 Chapter 2. Getting started

gratopy, Release 0.1.0

2.1.2 Images in gratopy

An image img is represented in gratopy by a pyopencl.array.Array of dimensions (𝑁𝑥, 𝑁𝑦) – or
(𝑁𝑥, 𝑁𝑦, 𝑁𝑧) for multiple slices – representing a rectangular grid of equidistant quadratic pixels of size 𝛿𝑥 =
image_width/max{𝑁𝑥, 𝑁𝑦}, where the associated values correspond to the average mass inside the area covered
by each pixel. The area covered by the pixels is called the image domain, and the image array can be associated with
a piecewise constant function on the image domain. Usually, we think of the investigated object as being circular
and contained in the rectangular image domain. More generally, image_width corresponds to the larger side length
of a rectangular (𝑁𝑥, 𝑁𝑦) grid of quadratic image pixels which allows considering slim objects. The image domain
is, however, always a rectangle or square that is aligned with the x and y axis. When using an image together with
projectionsetting – an instance of gratopy.ProjectionSettings – the values (𝑁𝑥, 𝑁𝑦) have to coincide with the
attribute img_shape of projectionsetting, we say they need to be compatible. The data type of this array must be
numpy.float32 or numpy.float64, i.e., single or double precision, and can have either C or F contiguity.

Note that in gratopy, the first and second axis of an image array corresponds to the x and y axis, respectively, as depicted
in the figures above.

2.1.3 Sinograms in gratopy

Similarly, a sinogram sino is represented by a pyopencl.array.Array of the shape (𝑁𝑠, 𝑁𝑎) or (𝑁𝑠, 𝑁𝑎, 𝑁𝑧) for
𝑁𝑠 being the number of detectors and 𝑁𝑎 being the number of angles for which projections are considered. When used
together with a projectionsetting of class gratopy.ProjectionSettings, these dimensions must be compatible,
i.e., (𝑁𝑠, 𝑁𝑎) has to coincide with the sinogram_shape attribute of projectionsetting. The width of the detector is
given by the attribute detector_width of projectionsetting and the detector pixels are equidistantly partitioning the
detector line with detector pixel width 𝛿𝑠 = detector_width/𝑁𝑠. The angles, on the other hand, do not need to be
equidistant or even partition the entire angular range; gratopy allows for rather general angle sets. The values associated
with pixels in the sinogram again correspond to the average intensity values of a continuous sinogram counterpart and
thus can be associated with a piecewise constant function. The data type of this array must be numpy.float32 or
numpy.float64, i.e., single or double precision, and can have either C or F contiguity.

2.1.4 Adjointness in gratopy

Gratopy allows a great variety of geometric setups for the forward projection and the backprojection. One partic-
ular feature is that forward projection and backprojection are adjoint operators, which is important, for instance, in
the context of optimization algorithms. Here, adjointness is achieved with respect to natural scalar products in im-
age and sinogram Hilbert space that we wish to clarify in the following. As described above, the discrete values
in an image array are associated with values of piecewise constant functions inside square pixels (of area 𝛿2𝑥) in the
image domain. For such piecewise constant functions, the classical 𝐿2 scalar product is considered, which results
in ⟨img1, img2⟩ = 𝛿2𝑥

∑︀
𝑥,𝑦 img1𝑥,𝑦img2𝑥,𝑦 for image arrays img1 and img2. Similarly, the discrete values of the

sinogram are associated with a piecewise constant function on the Cartesian product of an interval of length detec-
tor_width and the angular domain. Correspondingly, the natural inner product for the sinogram space is given by
⟨sino1, sino2⟩ = 𝛿𝑠

∑︀
𝑠,𝑎 ∆𝑎sino1𝑠,𝑎sino2𝑠,𝑎, where ∆𝑎 denotes the length of the angular range covered (in the sense

of piecewise constant discretization) by the a-th angle (by default, all ∆𝑎 are determined automatically based on the
angles parameter, for more information on angle_weights, see gratopy.ProjectionSettings). Hence, the imple-
mentations of the forward and backprojection in gratopy are to be understood in this context, and in particular, the
forward projection and backprojection operator are adjoint with respect to these scalar products, as can be observed in
tests.test_radon.test_adjointness() and tests.test_fanbeam.test_adjointness().

Though this is, in a sense, the natural discretization and sense of adjointness, it might be of interest to consider adjoint-
ness in a different sense. In this respect, gratopy allows to alter the sinogram space by manually setting the angle weights
(∆𝑎)𝑎 to desired values, which changes the weights in the backprojection, but always leads to an adjoint operator in
the sense of the aforementioned scalar products.

2.1. Basic principles of gratopy 7

https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array

gratopy, Release 0.1.0

For example, all angles can be weighted equally with 1 in a sparse angle setting. When setting angle_weights ∆𝑎 =
𝛿2𝑥
𝛿𝑠

, the operators are adjoint with respect to the standard scalar products ⟨img1, img2⟩ =
∑︀

𝑥,𝑦 img1𝑥,𝑦img2𝑥,𝑦 and
⟨sino1, sino2⟩ =

∑︀
𝑠,𝑎 sino1𝑠,𝑎sino2𝑠,𝑎.

2.2 First example: Radon transform

One can start in Python via the following simple code which computes the forward and backprojection of a phantom:

initial import
import numpy as np
import pyopencl as cl
import matplotlib.pyplot as plt

import gratopy

discretization parameters
number_angles = 60
number_detectors = 300
Nx = 300
Alternatively to number_angles one could give as angle input
angles = np.linspace(0, np.pi, number_angles+1)[:-1]

create pyopencl context
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

create phantom as test image (a pyopencl.array.Array of dimensions (Nx, Nx))
phantom = gratopy.phantom(queue,Nx)

create suitable projectionsettings
PS = gratopy.ProjectionSettings(queue, gratopy.RADON, phantom.shape,

number_angles, number_detectors)

compute forward projection and backprojection of created sinogram
results are pyopencl arrays
sino = gratopy.forwardprojection(phantom, PS)
backproj = gratopy.backprojection(sino, PS)

plot results
plt.figure()
plt.title("Generated Phantom")
plt.imshow(phantom.get(), cmap="gray")

plt.figure()
plt.title("Sinogram")
plt.imshow(sino.get(), cmap="gray")

plt.figure()
plt.title("Backprojection")
plt.imshow(backproj.get(), cmap="gray")
plt.show()

8 Chapter 2. Getting started

gratopy, Release 0.1.0

The following depicts the plots created by this example.

2.2. First example: Radon transform 9

gratopy, Release 0.1.0

10 Chapter 2. Getting started

gratopy, Release 0.1.0

2.3 Second example: Fanbeam transform

As a second example, we consider a fanbeam geometry that has a detector that is 120 (cm) wide, the distance from the
the source to the center of rotation is 100 (cm), while the distance from the source to the detector is 200 (cm). We do
not choose the image_width but rather let gratopy automatically determine a suitable image_width. We visualize the
defined geometry via the gratopy.ProjectionSettings.show_geometry method.

initial import
import numpy as np
import pyopencl as cl
import matplotlib .pyplot as plt

import gratopy

discretization parameters
number_angles = 60
number_detectors = 300
image_shape = (500, 500)

create pyopencl context
ctx = cl.create_some_context()

(continues on next page)

2.3. Second example: Fanbeam transform 11

gratopy, Release 0.1.0

(continued from previous page)

queue = cl.CommandQueue(ctx)

physical parameters
my_detector_width = 120
my_R = 200
my_RE = 100

fanbeam setting with automatic image_width
PS1 = gratopy.ProjectionSettings(queue, gratopy.FANBEAM,

img_shape=image_shape,
angles=number_angles,
n_detectors=number_detectors,
detector_width=my_detector_width,
R=my_R, RE=my_RE)

print("image_width chosen by gratopy: {:.2f}".format((PS1.image_width)))

fanbeam setting with set image_width
my_image_width = 80.0
PS2 = gratopy.ProjectionSettings(queue, gratopy.FANBEAM,

img_shape=image_shape,
angles=number_angles,
n_detectors=number_detectors,
detector_width=my_detector_width,
R=my_R, RE=my_RE,
image_width=my_image_width)

plot geometries associated to these projectionsettings
fig, (axes1, axes2) = plt.subplots(1,2)
PS1.show_geometry(np.pi/4, figure=fig, axes=axes1, show=False)
PS2.show_geometry(np.pi/4, figure=fig, axes=axes2, show=False)
axes1.set_title("Geometry chosen by gratopy as: {:.2f}".format((PS1.image_width)))
axes2.set_title("Geometry for manually-chosen image_width as: {:.2f}"

.format((my_image_width)))
plt.show()

Once the geometry has been defined via the projectionsetting, forward and backprojections can be used just like for
the Radon transform in the first example. Note that the automatism of gratopy chooses image_width = 57.46 (cm).
When looking at the corresponding plot via gratopy.ProjectionSettings.show_geometry, the image_width is
such that the entirety of an object inside the blue circle (with diameter 57.46) is exactly captured by each projection,
and thus, the area represented by the image corresponds to the yellow rectangle and blue circle which is the smallest
rectangle to capture the entire object. On the other hand, the outer red circle illustrates the diameter of the smallest
circular object entirely containing the image.

12 Chapter 2. Getting started

gratopy, Release 0.1.0

Plot produced by gratopy.ProjectionSettings.show_geometry for the fanbeam setting with automatic and man-
ually chosen image_width, both for projection from 45°.

Further examples can be found in the source files of the Test examples.

2.3. Second example: Fanbeam transform 13

gratopy, Release 0.1.0

14 Chapter 2. Getting started

CHAPTER

THREE

TEST EXAMPLES

The following documents a number of tests covering essentially all functions and features contained in the package.
These functions serve the double purpose of showing that the package is indeed working as desired (via pytest or
nosetests, see Installation), and illustrating to users how to set various parameters of the gratopy toolbox and what
their effect are (cf. the source code for the tests).

The tests are also able to produce plots of the results. To turn on plotting, the environment variable
GRATOPY_TEST_PLOT needs to be set, e.g. the command

GRATOPY_TEST_PLOT=true pytest

can be issued in the gratopy directory.

3.1 Radon transform

tests.test_radon.test_projection()
Basic projection test. Simply computes forward and backprojection of the Radon transform for two test images
in order to visually confirm the correctness of the method. This projection is repeated 10 times to estimate the
required time per execution.

tests.test_radon.test_types_contiguity()
Types and contiguity test. Runs forward and backprojections for parallel beam geometry for different precision
and contiguity settings, checking that they all lead to the same results.

tests.test_radon.test_weighting()
Mass preservation test. Check whether the total mass of an image (square with side length 4/3 and pixel values,
i.e. density, 1) is correctly transported into the total mass of a projection, i.e., the scaling is adequate.

tests.test_radon.test_adjointness()
Adjointness test. Creates random images and sinograms to check whether forward and backprojection are indeed
adjoint to one another (by comparing the corresponding dual pairings). This comparison is carried out for 100
experiments to affirm adjointness with some certainty.

tests.test_radon.test_nonquadratic()
Non-quadratic image test. Tests and illustrates the projection operator for non-quadratic images.

tests.test_radon.test_limited_angles()
Limited angle test. Tests and illustrates how to set the angles in case of limited angle situation, in particular show-
ing artifacts resulting from the incorrect use for the limited angle setting (leading to undesired angle_weights).
This can be achieved through the format of the angles parameter or by setting the angle_weights directly as
shown in the test.

15

gratopy, Release 0.1.0

tests.test_radon.test_angle_input_variants()
Angle parameter input test. Illustrates all possibilities to specify projection angles, checks the resulting angles
and angle_weights as well as tests the possibility to set the angle_weights manually.

tests.test_radon.test_midpoint_shift()
Shifted midpoint test. Tests and illustrates how the sinogram changes if the midpoint of an images is shifted away
from the center of rotation.

tests.test_radon.test_create_sparse_matrix()
Tests the create_sparse_matrix method to create a sparse matrix associated with the transform, and tests it
by applying forward and backprojection via matrix multiplication.

3.2 Fanbeam transform

tests.test_fanbeam.test_projection()
Basic projection test. Computes the forward and backprojection of the fanbeam transform for two test images
to visually confirm the correctness of the method. This projection is repeated 10 times to estimate the required
time per execution.

tests.test_fanbeam.test_types_contiguity()
Types and contiguity test. Types and contiguity test. Runs forward and backprojections for fanbeam geometry
for different precision and contiguity settings, checking that they all lead to the same results.

tests.test_fanbeam.test_weighting()
Mass preservation test. Checks whether the total mass of an image is correctly transported into the total mass of
a projection. Due to the fan geometry, the width of a projected object on the detector is wider than the original
object was, as the width of the fan grows linearly with the distance it travels. Consequently, also the total mass
on the detector is roughly the multiplication of the total mass in the object by the ratio R to RE. This estimate is
verified numerically.

tests.test_fanbeam.test_adjointness()
Adjointness test. Creates random images and sinograms to check whether forward and backprojection are indeed
adjoint to one another (by comparing the corresponding dual pairings). This comparison is carried out for 100
experiments to affirm adjointness with some certainty.

tests.test_fanbeam.test_nonquadratic()
Non-quadratic image test. Tests and illustrates the projection operator for non-quadratic images.

tests.test_fanbeam.test_limited_angles()
Limited angle test. Tests and illustrates how to set the angles in case of limited angle situation, in particular show-
ing artifacts resulting from the incorrect use for the limited angle setting (leading to undesired angle_weights).
This can be achieved through the format of the angles parameter or by setting the angle_weights directly as
shown in the test.

tests.test_fanbeam.test_midpoint_shift()
Shifted midpoint test. Tests and illustrates how the sinogram changes if the midpoint of an images is shifted away
from the center of rotation.

tests.test_fanbeam.test_geometric_orientation()
Geometric orientation test. Considers projections with parallel and fanbeam geometry for very simple images
in different shifted geometries to illustrate how the geometry of the projection work and that they indeed behave
analogously for parallel and fanbeam setting. Note that the axes of the images shown by matplotlib.pyplot.
imshow() are always rotated by 90 degrees compared to the standard (x, y)-axes.

tests.test_fanbeam.test_range_check_walnut()
The walnut data set from [HHKKNS2015] is considered for testing the implementation. This test observes that
with suitable parameters, the data is well-explained by the model defined by gratopy’s operators. In particular,

16 Chapter 3. Test examples

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow

gratopy, Release 0.1.0

one can observe that there is a slight imperfection in the data set as the detector is not perfectly centered. Indeed,
the total mass of the upper detector-half theoretically needs to coincide with the lower detector-half’s total mass
(up to numerical precision), but these values differ significantly. Moreover, this test serves to verify the validity of
the conjugate gradients (CG) method. It is well-known that the CG algorithm approximates the minimal-norm
least squares solution to the data, and in particular, the forward projection of this solution corresponds to the
projection of data onto the range of the operator. As depicted in the plots of the residual data shown by this test,
the walnut projection data admit, after detector_shift correction, only slight intensity variations as systematic
error.

tests.test_fanbeam.test_landweber()
Landweber reconstruction test. Performs the Landweber iteration to compute a reconstruction from a sinogram
contained in the walnut data set of [HHKKNS2015], testing the implementation.

tests.test_fanbeam.test_conjugate_gradients()
Conjugate gradients reconstruction test. Performs the conjugate gradients iteration to compute a reconstruction
from a sinogram contained in the walnut data set of [HHKKNS2015], testing the implementation.

tests.test_fanbeam.test_total_variation()
Total variation reconstruction test. Performs the toolbox’s total-variation-based approach to compute a recon-
struction from a sinogram contained in the walnut data set of [HHKKNS2015], testing the implementation.

tests.test_fanbeam.test_create_sparse_matrix()
Tests the create_sparse_matrix method to create a sparse matrix associated with the transform, and tests it
by applying forward and backprojection via matrix multiplication.

3.2. Fanbeam transform 17

gratopy, Release 0.1.0

18 Chapter 3. Test examples

CHAPTER

FOUR

FUNCTION REFERENCE

4.1 Definition of geometry

A cornerstone in applying projection methods is to define for which geometry the projection has to be computed. Thus,
the first step in using gratopy is always creating an instance of gratopy.ProjectionSettings defining the geometry,
and thus internally precomputing relevant quantities.

class gratopy.ProjectionSettings(queue, geometry, img_shape, angles, n_detectors=None,
angle_weights=None, detector_width=2.0, image_width=None, R=None,
RE=None, detector_shift=0.0, midpoint_shift=[0.0, 0.0],
reverse_detector=False)

Creates and stores all relevant information concerning the projection geometry. Serves as a parameter for virtually
all gratopy’s functions.

Parameters

• queue (pyopencl.CommandQueue) – The OpenCL command queue with which the com-
putations are associated.

• geometry (int) – Determines whether parallel beam (gratopy.RADON) or fanbeam geom-
etry (gratopy.FANBEAM) is considered.

• img_shape (tuple (𝑁𝑥, 𝑁𝑦)) – The number of pixels of the image in x- and y-direction
respectively, i.e., the image dimension. It is assumed that by default, the center of rotation is
in the middle of the grid of quadratic pixels. The midpoint can, however, be shifted, see the
midpoint_shift parameter.

• angles (int, list[float] / numpy.ndarray, list[tuple(int/list[float]/
numpy.ndarray, float, float)]) – Determines which angles are considered for the
projection. An integer is interpreted as the number 𝑁𝑎 of uniformly distributed angles in the
angular range [0, 𝜋[, [0, 2𝜋[for Radon and fanbeam transform, respectively, where for nega-
tive integers the same angles according to its modulus but with reversed order are generated.
Alternatively, the angles can be given explicitly as a list or numpy.ndarray. These two
options also imply a full angle setting (as opposed to limited angle setting).

A limited angle setting can be specified in two ways. First, a list of angular range sections
can be passed as input. An angular range section is a tuple with either an integer or a
list/array of angles (first element) together with a pair specifying the lower and upper bound
of the angular range interval (second and third element), i.e., of type tuple(int, float,
float) or tuple(list[float], float, float). If the first element is an integer, the
angular interval will be uniformly partitioned into the modulus number of angles (note that
the first and last angles are not the lower/upper bounds to ensure uniform angle weights)
again in increasing or decreasing order, depending on the sign. Otherwise, a list or array
specifying the individual angles is expected. In particular, multiple angular sections can be
specified, by passing a list of angular range sections.

19

https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/stdtypes.html#tuple

gratopy, Release 0.1.0

Alternatively, one can use a list of angles and set angle_weigths (see below) manually to
suitable values by passing a scalar, a list or an array.

• n_detectors (int, default None) – The number 𝑁𝑠 of (equi-spaced) detector pixels con-
sidered. When None, 𝑁𝑠 will be chosen as

√︁
𝑁2

𝑥 + 𝑁2
𝑦 .

• angle_weights (None, float, list[float] or numpy.ndarray, default None) – The
weights (∆𝑎)𝑎 associated with the angles, which influences the weighting of the rays for
the backprojection. See Adjointness in gratopy for a more detailed description. If None (by
default), the weights are computed automatically based on the angles parameter. In the full
angle setting, this automatism considers a partition of the half circle for parallel beam and
the full circle for fanbeam geometry based on the given angles and sets the angle weight to
the average of the distances from of an angle to its two neighbors (in the sense of a circle).
Similarly, in the limited angle case, each angle section is partitioned by the angles associated
with this section and the weights are chosen taking additionally the boundary of the section
into account. In case of a scalar input, this scalar will be used as the (constant) angle weight
for all angles. Further, all angle weights can directly be set by passing an input of type
list[float] or numpy.ndarray of suitable length.

• detector_width (float, default 2.0) – Physical length of the detector. For standard Radon
transformation this can usually remain fixed at the default value (together with image_width).

• image_width (float, default None) – Physical size of the image indicated by the length of
the longer side of the rectangular image domain. For parallel beam geometry, when None,
image_width is chosen as 2.0. For fanbeam geometry, when None, image_width is cho-
sen such that the projections exactly capture the image domain. To illustrate, choosing im-
age_width = detector_width results in the standard Radon transform with each projection
touching the entire object, while img_width = 2 detector_width results in each projection
capturing only half of the image.

• R (float, must be set for fanbeam geometry) – Physical (orthogonal) distance from source
to detector line. Has no impact for parallel beam geometry.

• RE (float, must be set for fanbeam geometry) – Physical distance from source to origin
(center of rotation). Has no impact for parallel beam geometry.

• detector_shift (list[float], default 0.0) – Physical shift of all detector pixels along
the detector line. Defaults to the application of no shift, i.e., the detector pixels span the
range [-detector_width/2, detector_width/2].

• midpoint_shift (list, default [0.0, 0.0]) – Two-dimensional vector representing the shift
of the image away from center of rotation. Defaults to the application of no shift, i.e., the
center of rotation is also the center of the image.

• reverse_detector (bool, default False) – When True, the detector direction is flipped
in case of fanbeam geometry, i.e., the positive and negative detector positions are swapped.
This parameter has no effect for parallel geometry. When activated together with swapping
the sign of the angles, this has the same effect for projection as mirroring the image.

These input parameters create attributes of the same name in an instance of ProjectionSettings, though the
corresponding values might be slightly restructured by internal processes. Further useful attributes are listed
below. It is advised not to set these attributes directly but rather to choose suitable input parameters for the
initialization.

Variables

• is_parallel (bool) – True if the geometry is for parallel beams, False otherwise.

• is_fan (bool) – True if the geometry is for fanbeam geometry, False otherwise.

20 Chapter 4. Function reference

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#False
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#False

gratopy, Release 0.1.0

• angles (numpy.ndarray) – Angles from which projections are considered.

• n_angles (int) – Number of all angles 𝑁𝑎.

• sinogram_shape (tuple (𝑁𝑠, 𝑁𝑎)) – Represents the number of considered detectors
(n_detectors) and angles (n_angles).

• delta_x (float) – Physical width and height 𝛿𝑥 of the image pixels.

• delta_s (float) – Physical width 𝛿𝑠 of a detector pixel.

• delta_ratio (float) – Ratio 𝛿𝑠/𝛿𝑥, i.e. the detector pixel width relative to unit image
pixels.

• angle_weights (numpy.ndarray) – Represents the angular discretization width for each
angle which are used to weight the projections, see parameter angle_weights above. When
none was given as input, the angle_weights chosen by the automatism will be written to this
variable.

• prg (gratopy.Program) – OpenCL program containing the gratopy OpenCL kernels. For
the corresponding code, see gratopy.create_code

• struct (dict see radon_struct() and fanbeam_struct() returns) – Data used in the
projection operator. Contains in particular dictionaries of numpy.ndarray associated to
precision single and double with the angular information necessary for computations.

create_sparse_matrix(dtype=dtype('float32'), order='F')
Creates a sparse matrix representation of the associated forward projection.

Parameters

• dtype (numpy.dtype, default numpy.float32) – Precision to compute the sparse repre-
sentation in.

• order (str, default F) – Contiguity of the image and sinogram array to the transform, can
be F or C.

Returns Sparse matrix corresponding to the forward projection.

Return type scipy.sparse.coo_matrix

Note that for high resolution projection operators, this may require infeasibly much time and memory.

show_geometry(angle, figure=None, axes=None, show=True)
Visualize the geometry associated with the projection settings. This can be useful in checking that indeed,
the correct input for the desired geometry was given.

Parameters

• angle (float) – The angle for which the projection is considered.

• figure (matplotlib.figure.Figure, default None) – Figure in which to plot. If nei-
ther figure nor axes are given, a new figure (figure(0)) will be created.

• axes (matplotlib.axes.Axes, default None) – Axes to plot into. If None, a new axes
inside the figure is created.

• show (bool, default True) – Determines whether the resulting plot is immediately shown
(True). If False, matplotlib.pyplot.show() can be used at a later point to show the
figure.

Returns Figure and axes in which the geometry visualization is plotted.

Return type tuple(matplotlib.figure.Figure, matplotlib.axes.Axes)

4.1. Definition of geometry 21

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
https://docs.python.org/dev/library/functions.html#float
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://docs.python.org/dev/library/constants.html#None
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/constants.html#False
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

gratopy, Release 0.1.0

4.2 Transforms

The functions forwardprojection() and backprojection() perform the projection operations based on the ge-
ometry defined in projectionsetting. The images img and the sinograms sino need to be interpreted and behave as
described in Getting started.

gratopy.forwardprojection(img, projectionsetting, sino=None, wait_for=[])
Performs the forward projection (either for the Radon or the fanbeam transform) of a given image using the given
projection settings.

Parameters

• img (pyopencl.array.Arraywith compatible dimensions) – The image to be transformed.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the forward transform is computed.

• sino (pyopencl.array.Array with compatible dimensions, default None) – The array in
which the result of transformation is saved. If None (per default) is given, a new array will
be created and returned.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns The sinogram associated with the projection of the image. If the sino is not None, the same
pyopencl array is returned with the values in its data overwritten.

Return type pyopencl.array.Array

The forward projection can be performed for single or double precision arrays. The dtype (precision) of img and
sino (if given) have to coincide and the output will be of the same precision. It respects any combination of C
and F contiguous arrays where output will be of the same contiguity as img if no sino is given. The OpenCL
events associated with the transform will be added to the output’s events. In case the output array is created,
it will use the allocator of img. If the image and sinogram have a third dimension (z-direction) the operator is
applied slicewise.

gratopy.backprojection(sino, projectionsetting, img=None, wait_for=[])
Performs the backprojection (either for the Radon or the fanbeam transform) of a given sinogram using the given
projection settings.

Parameters

• sino (pyopencl.array.Array with compatible dimensions) – Sinogram to be backpro-
jected.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the forward transform is computed.

• img (pyopencl.array.Array with compatible dimensions, default None) – The array in
which the result of backprojection is saved. If None is given, a new array will be created and
returned.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns The image associated with the backprojected sinogram, coinciding with the img if not None,
with the values in its data overwritten.

Return type pyopencl.array.Array

22 Chapter 4. Function reference

getting_started.html
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/runtime.html#module-pyopencl
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array

gratopy, Release 0.1.0

The backprojection can be performed for single or double precision arrays. The dtype (precision) of img and
sino have to coincide. If no img is given, the output precision coincides with sino’s. The operation respects any
combination of C and F contiguous arrays, where if img is None, the result’s contiguity coincides with sino’s.
The OpenCL events associated with the transform will be added to the output’s events. In case the output array
is created, it will use the allocator of sino. If the sinogram and image have a third dimension (z-direction), the
operator is applied slicewise.

4.3 Solvers

Based on these forward and backward operators, one can implement a variety of reconstruction algorithms, where
the toolbox’s focus is on iterative methods (as those in particular are dependent on efficient implementation). The
following constitute a few easy-to-use examples which also serve as illustration on how gratopy can be included in
custom pyopencl implementations.

gratopy.landweber(sino, projectionsetting, number_iterations=100, w=1)
Performs a Landweber iteration [L1951] to approximate a solution to the image reconstruction problem associ-
ated with a projection and sinogram. This method is also known as SIRT.

Parameters

• sino (pyopencl.array.Array) – Sinogram data to reconstruct from.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the projection is considered.

• number_iterations (int, default 100) – Number of iteration steps to be performed.

• w (float, default 1) – Relaxation parameter weighted by the norm of the projection operator
(w<1 guarantees convergence).

Returns Reconstruction from given sinogram gained via Landweber iteration.

Return type pyopencl.array.Array

gratopy.conjugate_gradients(sino, projectionsetting, number_iterations=20, epsilon=0.0, x0=None)
Performs a conjugate gradients iteration [HS1952] to approximate a solution to the image reconstruction problem
associated with a projection and sinogram.

Parameters

• sino (pyopencl.array.Array) – Sinogram data to invert.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the projection is considered.

• number_iterations (float, default 20) – Maximal number of iteration steps to be per-
formed.

• x0 (pyopencl.array.Array, default None) – Initial guess for iteration (defaults to zeros if
None).

• epsilon (float, default 0.00) – Tolerance parameter, the iteration stops if relative resid-
ual<epsilon.

Returns Reconstruction gained via conjugate gradients iteration.

Return type pyopencl.array.Array

4.3. Solvers 23

https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/runtime.html#module-pyopencl
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/functions.html#float
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#float
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array

gratopy, Release 0.1.0

gratopy.total_variation(sino, projectionsetting, mu, number_iterations=1000, slice_thickness=1.0,
stepsize_weighting=10.0)

Performs a primal-dual algorithm [CP2011] to solve a total-variation regularized reconstruction problem as-
sociated with a given projection operator and sinogram. This corresponds to the approximate solution of
min𝑢

𝜇
2 ‖𝒫𝑢 − 𝑓‖2𝐿2 + TV(𝑢) for 𝒫 the projection operator, 𝑓 the sinogram and 𝜇 a positive regularization

parameter (i.e., an 𝐿2 − TV reconstruction approach).

Parameters

• sino (pyopencl.array.Array) – Sinogram data to invert.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the projection is considered.

• mu – Regularization parameter, the smaller the stronger the applied regularization.

• number_iterations (float, default 1000) – Number of iterations to be performed.

• slice_thickness (float, default 1.0, i.e., isotropic voxels) – When 3-dimensional data
sets are considered, regularization is also applied across slices. This parameter represents the
ratio of the slice thickness to the length of one pixel within a slice. The choice slice_thickness
=0 results in no coupling across slices.

• stepsize_weighting (float, default 10.0) – Allows to weight the primal-dual algorithm’s
step sizes 𝜎 (stepsize for dual update) and 𝜏 (stepsize for primal update) (with 𝜎𝜏‖𝒫‖2 ≤ 1)
by multiplication and division, respectively, with the given value.

Returns Reconstruction gained via primal-dual iteration for the total-variation regularized recon-
struction problem.

Return type pyopencl.array.Array

gratopy.normest(projectionsetting, number_iterations=50, dtype='float32', allocator=None)
Estimate the spectral norm of the projection operator via power iteration, i.e., the operator norm with respect to
the norms discussed in section concerning adjointness. Useful for iterative methods that require such an estimate,
e.g., landweber() or total_variation().

Parameters

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the projection is considered.

• number_iterations (int, default 50) – The number of iterations to terminate after.

• dtype (numpy.dtype, default numpy.float32) – Precision for which to apply the projec-
tion operator (which is not supposed to impact the estimate significantly).

Returns An estimate of the spectral norm for the projection operator.

Return type float

gratopy.weight_sinogram(sino, projectionsetting, sino_out=None, divide=False, wait_for=[])
Performs an angular rescaling of a given sinogram via multiplication (or division) with the projection’s angle
weights (size of projections in angle dimension, see attributes of ProjectionSettings) to the respective pro-
jections. This can be useful, e.g., for computing norms or dual pairings in the appropriate Hilbert space.

Parameters

• sino (pyopencl.array.Array) – The sinogram whose rescaling is computed. This array
itself remains unchanged unless the same array is given as sino_out.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the rescaling is computed.

24 Chapter 4. Function reference

https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://docs.python.org/dev/library/functions.html#float
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array

gratopy, Release 0.1.0

• sino_out (pyopencl.array.Array default None) – The array in which the result of rescal-
ing is saved. If None (per default) is given, a new array will be created and returned. When
giving the same array as sino, the values in sino will be overwritten.

• divide (bool, default False) – Determines whether the sinogram is divided (instead of
multiplied) by the angular weights. If True, a division is performed, otherwise, the weights
are multiplied.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns The weighted sinogram. If sino_out is not None, it is returned with the values in its data
overwritten. In particular, giving the same array for sino and sino_out will overwrite this array.

Return type pyopencl.array.Array

4.4 Data generation

For convenient testing, a phantom generator is included which creates a modified two-dimensional phantom of arbitrary
size.

gratopy.phantom(queue, N, modified=True, E=None, ret_E=False, dtype='double', allocator=None)
Generate an OpenCL Shepp-Logan phantom of size (N, N).

Parameters

• queue (pyopencl.CommandQueue) – The OpenCL command queue.

• N (int or array_like) – Matrix size, (N, N) or (M, N).

• modified (bool) – Use original gray-scale values as given in [SL1974]. Most implemen-
tations use modified values for better contrast (for example, see2 and3).

• E (array_like or None) – 𝑒× 6 numeric matrix defining 𝑒 ellipses. The six columns of E
are:

– Gray value of the ellipse (in [0, 1])

– Length of the horizontal semi-axis of the ellipse

– Length of the vertical semi-axis of the ellipse

– x-coordinate of the center of the ellipse (in [-1, 1])

– y-coordinate of the center of the ellipse (in [-1, 1])

– Angle between the horizontal semi-axis of the ellipse and the x-axis of the image (in rad)

• ret_E (bool) – Return the matrix E used to generate the phantom.

• dtype (str or numpy.dtype) – The pyopencl data type in which the phantom is created.

• allocator (An implementation of pyopencl.tools.AllocatorInterface or None) –
The pyopencl allocator used for memory allocation.

Returns Phantom/parameter pair (ph [, E]).

Variables

• ph (pyopencl.array.Array) – The Shepp-Logan phantom.
2 https://sigpy.readthedocs.io/en/latest/_modules/sigpy/sim.html#shepp_logan
3 http://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom

4.4. Data generation 25

https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/constants.html#False
https://docs.python.org/dev/library/constants.html#True
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://documen.tician.de/pyopencl/runtime.html#module-pyopencl
https://documen.tician.de/pyopencl/tools.html#pyopencl.tools.AllocatorInterface
https://docs.python.org/dev/library/constants.html#None
https://documen.tician.de/pyopencl/runtime.html#module-pyopencl
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://sigpy.readthedocs.io/en/latest/_modules/sigpy/sim.html#shepp_logan
http://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom

gratopy, Release 0.1.0

• E (array_like, optional) – The ellipse parameters used to generate ph.

This much abused phantom is due to [SL1974]. The tabulated values in the paper are reproduced in the Wikipedia
entry1. The original values do not produce great contrast, so modified values are used by default (see Table B.1
in [TS1996] or implementations? and?).

4.5 Internal functions

The following contains the documentation for a set of internal functions which could be of interest for developers. Note
that these might be subject to change in the future.

gratopy.radon(sino, img, projectionsetting, wait_for=[])
Performs the Radon transform of a given image using the given projectionsetting.

Parameters

• sino (pyopencl.array.Array) – The array in which the resulting sinogram is written.

• img (pyopencl.array.Array) – The image to transform.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the Radon transform is performed.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns Event associated with the computation of the Radon transform (which is also added to the
events of sino).

Return type pyopencl.Event

gratopy.radon_ad(img, sino, projectionsetting, wait_for=[])
Performs the Radon backprojection of a given sinogram using the given projectionsetting.

Parameters

• img (pyopencl.array.Array) – The array in which the resulting backprojection is written.

• sino (pyopencl.array.Array) – The sinogram to transform.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the Radon backprojection is performed.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns Event associated with the computation of the Radon backprojection (which is also added to
the events of img).

Return type pyopencl.Event

gratopy.radon_struct(queue, img_shape, angles, angle_weights, n_detectors=None, detector_width=2.0,
image_width=2.0, midpoint_shift=[0, 0], detector_shift=0.0)

Creates the structure storing geometry information required for the Radon transform and its adjoint.

Parameters

• queue (pyopencl.CommandQueue) – OpenCL command queue in which context the com-
putations are to be performed.

1 https://en.wikipedia.org/wiki/Shepp%E2%80%93Logan_phantom

26 Chapter 4. Function reference

https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue
https://en.wikipedia.org/wiki/Shepp%E2%80%93Logan_phantom

gratopy, Release 0.1.0

• img_shape (tuple (𝑁𝑥, 𝑁𝑦)) – The number of pixels of the image in x- and y-direction
respectively, i.e., the image size. It is assumed that by default, the center of rotation is in
the middle of the grid of quadratic pixels. The midpoint can, however, be shifted, see the
midpoint_shift parameter.

• angles (numpy.ndarray) – Determines which angles are considered for the projection.

• angle_weights (numpy.ndarray) – The weights associated to the angles, e.g., how much
of the angular range is covered by this angle. This impacts the weighting of rays for the
backprojection.

• n_detectors (int, default None) – The number 𝑁𝑠 of considered (equi-spaced) detectors.
If None, 𝑁𝑠 will be chosen as

√︁
𝑁2

𝑥 + 𝑁2
𝑦 .

• detector_width (float, default 2.0) – Physical length of the detector line.

• image_width (float, default 2.0) – Physical size of the image indicated by the length of
the longer side of the rectangular image domain. Choosing image_width = detector_width
results in the standard Radon transform with each projection touching the entire object, while
img_width = 2 detector_width results in each projection capturing only half of the image.

• midpoint_shift (list[float], default [0.0, 0.0]) – Two-dimensional vector representing
the shift of the image away from center of rotation. Defaults to the application of no shift.

• detector_shift (list[float], default 0.0) – Physical shift of the detector along the
detector line in detector pixel offsets. Defaults to the application of no shift, i.e., the detector
reaches from [- detector_width/2, detector_width/2].

Returns Struct dictionary with the following variables as entries, where the keys are strings of the
same names:

Return type dict

Variables

• ofs_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary containing the rele-
vant angular information as numpy.ndarray for the data types numpy.float32 and numpy.
float64. The arrays have dimension (8, 𝑁𝑎) with columns:

0 weighted cosine
1 weighted sine
2 detector offset
3 inverse of cosine/sine
4 angular weight
5 flipped

The remaining columns are unused. The value flipped indicates whether the x and y axis are
flipped (1) or not (0), which is done for reasons of numerical stability. The 4th entry contains
the inverse of sine if the axes are flipped and the inverse of cosine otherwise.

• shape (tuple) – Tuple of integers (𝑁𝑥, 𝑁𝑦) representing the size of the image.

• sinogram_shape (tuple) – Tuple of integers (𝑁𝑠, 𝑁𝑎) representing the size of the sino-
gram.

• geo_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary mapping the allowed
data types to an array containing the values [𝛿𝑥, 𝛿𝑠, 𝑁𝑥, 𝑁𝑦, 𝑁𝑠, 𝑁𝑎].

4.5. Internal functions 27

https://docs.python.org/dev/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/stdtypes.html#tuple

gratopy, Release 0.1.0

• angles_diff_buf – Dictionary containing the same values as in ofs_dict [4] representing
the weights associated with the angles (i.e., the length of sinogram pixels in the angular
direction).

gratopy.fanbeam(sino, img, projectionsetting, wait_for=[])
Performs the fanbeam transform of a given image using the given projectionsetting.

Parameters

• sino (pyopencl.array.Array) – The array in which the resulting sinogram is written.

• img (pyopencl.array.Array) – The image to transform.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the fanbeam transform is performed.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns Event associated with the computation of the fanbeam transform (which is also added to the
events of sino).

Return type pyopencl.Event

gratopy.fanbeam_ad(img, sino, projectionsetting, wait_for=[])
Performs the fanbeam backprojection of a given sinogram using the given projectionsetting.

Parameters

• img (pyopencl.array.Array) – The array in which the resulting backprojection is written.

• sino (pyopencl.array.Array) – The sinogram to transform.

• projectionsetting (gratopy.ProjectionSettings) – The geometry settings for
which the fanbeam backprojection is performed.

• wait_for (list[pyopencl.Event], default []) – The events to wait for before performing
the computation in order to avoid, e.g., race conditions, see pyopencl.Event. This program
will always wait for img.events and sino.events (so you need not add them to wait_for).

Returns Event associated with the computation of the fanbeam backprojection (which is also added
to the events of img).

Return type pyopencl.Event

gratopy.fanbeam_struct(queue, img_shape, angles, detector_width, source_detector_dist, source_origin_dist,
angle_weights, n_detectors=None, detector_shift=0.0, image_width=None,
midpoint_shift=[0, 0], reverse_detector=False)

Creates the structure storing geometry information required for the fanbeam transform and its adjoint.

Parameters

• queue (pyopencl.CommandQueue) – OpenCL command queue in which context the com-
putations are to be performed.

• img_shape (tuple (𝑁𝑥, 𝑁𝑦)) – The number of pixels of the image in x- and y-direction
respectively, i.e., the image size. It is assumed that by default, the center of rotation is in
the middle of the grid of quadratic pixels. The midpoint can, however, be shifted, see the
midpoint_shift parameter.

• angles (numpy.ndarray) – Determines which angles are considered for the projection.

• detector_width (float, default 2.0) – Physical length of the detector line.

28 Chapter 4. Function reference

https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event
https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue
https://docs.python.org/dev/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/functions.html#float

gratopy, Release 0.1.0

• source_detector_dist (float) – Physical (orthogonal) distance R from the source to
the detector line.

• source_origin_dist (float) – Physical distance RE from the source to the origin (center
of rotation).

• angle_weights (numpy.ndarray) – The weights associated to the angles, e.g., how much
of the angular range is covered by this angle. This impacts the weighting of rays for the
backprojection.

• n_detectors (int or None, default None) – The number 𝑁𝑠 of considered (equi-spaced)
detectors. If None, 𝑁𝑠 will be chosen as

√︁
𝑁2

𝑥 + 𝑁2
𝑦 .

• detector_shift (list[float], default 0.0) – Physical shift of the detector along the
detector line in detector pixel offsets. Defaults to the application of no shift, i.e., the detector
reaches from [- detector_width/2, detector_width/2].

• image_width (float, default None) – Physical size of the image indicated by the length of
the longer side of the rectangular image domain. If None, image_width is chosen to capture
just all rays.

• midpoint_shift (list[float], default [0.0, 0.0]) – Two-dimensional vector representing
the shift of the image away from center of rotation. Defaults to the application of no shift.

• reverse_detector (bool, default False) – When True, the detector direction is flipped.

Returns Struct dictionary with the following variables as entries, where the keys are strings of the
same names:

Return type dict

Variables

• img_shape (tuple) – Tuple of integers (𝑁𝑥, 𝑁𝑦) representing the size of the image.

• sinogram_shape (tuple) – Tuple of integers (𝑁𝑠, 𝑁𝑎) representing the size of the sino-
gram.

• ofs_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary containing the rele-
vant angular information as numpy.ndarray for the data types numpy.float32 and numpy.
float64. The arrays have dimension (8, 𝑁𝑎) with columns:

0 1 vector of length 𝛿𝑠 pointing in positive detector direction
2 3 vector connecting source and center of rotation
4 5 vector connection the origin and its projection onto the detector line
6 angular weight

The remaining column is unused.

• sdpd_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary mapping numpy.
float32 and numpy.float64 to a numpy.ndarray representing the values

√︀
(𝑠2 + 𝑅2)

for the weighting in the fanbeam transform (weighted by delta_ratio, i.e., 𝛿𝑠/𝛿𝑥).

• image_width – Physical size of the image. Equal to the input parameter if given, or to the
determined image size if image_width is None (see parameter image_width).

• geo_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary mapping the allowed
data types to an array containing the values [source detector distance/𝛿𝑥, source origin
distance/𝛿𝑥, width of a detector_pixel relative to width of image_pixels i.e. 𝛿𝑠/𝛿𝑥, image
midpoint x-coordinate (in pixels), image midpoint y-coordinate (in pixels), detector line mid-
point (in detector-pixels), 𝑁𝑥, 𝑁𝑦 , 𝑁𝑠, 𝑁𝑎, width of an image pixel (𝛿𝑥)].

4.5. Internal functions 29

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/constants.html#False
https://docs.python.org/dev/library/constants.html#True
https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/dev/library/constants.html#None

gratopy, Release 0.1.0

• angles_diff (dict{numpy.dtype: numpy.ndarray}) – Dictionary containing the
same values as in ofs_dict [6] representing the weights associated with the angles (i.e., the
length of sinogram pixels in the angular direction).

gratopy.create_code()
Reads and creates CL code containing all OpenCL kernels of the gratopy toolbox.

Returns The toolbox’s CL code.

Return type str

30 Chapter 4. Function reference

https://docs.python.org/dev/library/stdtypes.html#str

CHAPTER

FIVE

ACKNOWLEDGEMENTS

5.1 Authors, publications and funding

5.1.1 Authors

• Kristian Bredies, University of Graz, kristian.bredies@uni-graz.at

• Richard Huber, University of Graz, richard.huber@uni-graz.at

5.1.2 Publications

If you find the toolbox useful, please cite the following associated publications.

• Kristian Bredies and Richard Huber. (2021). Convergence analysis of pixel-driven Radon and fanbeam trans-
forms. SIAM Journal on Numerical Analysis 59(3), 1399–1432. https://doi.org/10.1137/20M1326635.

• Kristian Bredies and Richard Huber. (2021). Gratopy 0.1 [Software]. Zenodo. https://doi.org/10.5281/zenodo.
5221442

5.1.3 Funding

The development of this software was supported by the following projects:

• Regularization Graphs for Variational Imaging, funded by the Austrian Science Fund (FWF), grant P-29192,

• International Research Training Group IGDK 1754 Optimization and Numerical Analysis for Partial Dif-
ferential Equations with Nonsmooth Structures, funded by the German Research Council (DFG) and the
Austrian Science Fund (FWF), grant W-1244.

5.2 Used data sets and code

The walnut data set included in this toolbox is licensed under CC BY 4.0 and available on Zenodo:

• Keijo Hämäläinen, Lauri Harhanen, Aki Kallonen, Antti Kujanpää, Esa Niemi and Samuli Siltanen. (2015).
Tomographic X-ray data of a walnut (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1254206

The phantom creation code is based on Phantominator, copyright by its contributors and licensed under GPLv3. See
https://github.com/mckib2/phantominator.

31

mailto:kristian.bredies@uni-graz.at
mailto:richard.huber@uni-graz.at
https://doi.org/10.1137/20M1326635
https://doi.org/10.5281/zenodo.5221442
https://doi.org/10.5281/zenodo.5221442
https://creativecommons.org/licenses/by/4.0/
https://zenodo.org
http://doi.org/10.5281/zenodo.1254206
https://github.com/mckib2/phantominator
https://github.com/mckib2/phantominator/blob/master/LICENSE
https://github.com/mckib2/phantominator

gratopy, Release 0.1.0

5.3 License

GNU GENERAL PUBLIC LICENSE Version 3

32 Chapter 5. Acknowledgements

https://github.com/kbredies/gratopy/blob/master/LICENSE

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

33

gratopy, Release 0.1.0

34 Chapter 6. Indices and tables

BIBLIOGRAPHY

[HHKKNS2015] Keijo Hämäläinen and Lauri Harhanen and Aki Kallonen and Antti Kujanpää and Esa Niemi and
Samuli Siltanen. “Tomographic X-ray data of a walnut”. https://arxiv.org/abs/1502.04064

[L1951] Landweber, L. “An iteration formula for Fredholm integral equations of the first kind.” Amer. J. Math.
73, 615–624 (1951). https://doi.org/10.2307/2372313

[HS1952] Hestenes, M. R., Stiefel, E. “Methods of Conjugate Gradients for Solving Linear Systems.” Journal of
Research of the National Bureau of Standards, 49:409–436 (1952). https://doi.org/10.6028/jres.049.
044

[CP2011] Chambolle, A., Pock, T. “A First-Order Primal-Dual Algorithm for Convex Problems with Applications
to Imaging.” J Math Imaging Vis 40, 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

[SL1974] Shepp, Lawrence A., and Benjamin F. Logan. “The Fourier reconstruction of a head section.” IEEE
Transactions on nuclear science 21.3 (1974): 21-43.

[TS1996] Toft, Peter Aundal, and John Aasted Sørensen. “The Radon transform-theory and implementation.”
(1996).

35

https://arxiv.org/abs/1502.04064
https://doi.org/10.2307/2372313
https://doi.org/10.6028/jres.049.044
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1007/s10851-010-0251-1

gratopy, Release 0.1.0

36 Bibliography

PYTHON MODULE INDEX

g
gratopy, 19

t
tests.test_fanbeam, 16
tests.test_radon, 15

37

gratopy, Release 0.1.0

38 Python Module Index

INDEX

B
backprojection() (in module gratopy), 22

C
conjugate_gradients() (in module gratopy), 23
create_code() (in module gratopy), 30
create_sparse_matrix() (gratopy.ProjectionSettings

method), 21

F
fanbeam() (in module gratopy), 28
fanbeam_ad() (in module gratopy), 28
fanbeam_struct() (in module gratopy), 28
forwardprojection() (in module gratopy), 22

G
gratopy

module, 19

L
landweber() (in module gratopy), 23

M
module

gratopy, 19
tests.test_fanbeam, 16
tests.test_radon, 15

N
normest() (in module gratopy), 24

P
phantom() (in module gratopy), 25
ProjectionSettings (class in gratopy), 19

R
radon() (in module gratopy), 26
radon_ad() (in module gratopy), 26
radon_struct() (in module gratopy), 26

S
show_geometry() (gratopy.ProjectionSettings method),

21

T
test_adjointness() (in module tests.test_fanbeam),

16
test_adjointness() (in module tests.test_radon), 15
test_angle_input_variants() (in module

tests.test_radon), 15
test_conjugate_gradients() (in module

tests.test_fanbeam), 17
test_create_sparse_matrix() (in module

tests.test_fanbeam), 17
test_create_sparse_matrix() (in module

tests.test_radon), 16
test_geometric_orientation() (in module

tests.test_fanbeam), 16
test_landweber() (in module tests.test_fanbeam), 17
test_limited_angles() (in module

tests.test_fanbeam), 16
test_limited_angles() (in module tests.test_radon),

15
test_midpoint_shift() (in module

tests.test_fanbeam), 16
test_midpoint_shift() (in module tests.test_radon),

16
test_nonquadratic() (in module tests.test_fanbeam),

16
test_nonquadratic() (in module tests.test_radon), 15
test_projection() (in module tests.test_fanbeam), 16
test_projection() (in module tests.test_radon), 15
test_range_check_walnut() (in module

tests.test_fanbeam), 16
test_total_variation() (in module

tests.test_fanbeam), 17
test_types_contiguity() (in module

tests.test_fanbeam), 16
test_types_contiguity() (in module

tests.test_radon), 15
test_weighting() (in module tests.test_fanbeam), 16
test_weighting() (in module tests.test_radon), 15

39

gratopy, Release 0.1.0

tests.test_fanbeam
module, 16

tests.test_radon
module, 15

total_variation() (in module gratopy), 23

W
weight_sinogram() (in module gratopy), 24

40 Index

	Installation
	Installation in Python
	Testing correct installation
	Requirements

	Getting started
	Basic principles of gratopy
	ProjectionSettings
	Images in gratopy
	Sinograms in gratopy
	Adjointness in gratopy

	First example: Radon transform
	Second example: Fanbeam transform

	Test examples
	Radon transform
	Fanbeam transform

	Function reference
	Definition of geometry
	Transforms
	Solvers
	Data generation
	Internal functions

	Acknowledgements
	Authors, publications and funding
	Authors
	Publications
	Funding

	Used data sets and code
	License

	Indices and tables
	Bibliography
	Python Module Index
	Index

