

Welcome to gratopy’s documentation!

The gratopy [https://github.com/kbredies/gratopy/] (Graz accelerated tomographic projections for Python) toolbox is a Python3 software package for the efficient and high-quality computation of Radon transforms, fanbeam transforms as well as the associated backprojections. The included operators are based on pixel-driven projection methods which were shown to possess favorable approximation properties [https://epubs.siam.org/doi/abs/10.1137/20M1326635]. The toolbox offers a powerful parallel OpenCL/GPU implementation which admits high execution speed and allows for seamless integration into PyOpenCL [https://documen.tician.de/pyopencl/]. Gratopy can efficiently be combined with other PyOpenCL code and is well-suited for the development of iterative tomographic reconstruction approaches, in particular, for those involving optimization algorithms.

Highlights

	Easy-to-use tomographic projection toolbox.

	High-quality 2D projection operators.

	Fast projection due to custom OpenCL/GPU implementation.

	Seamless integration into PyOpenCL.

	Basic iterative reconstruction schemes included (Landweber, CG, total variation).

	Comprehensive documentation, tests and example code.

The fanbeam projection of a walnut and gratopy’s Landweber and total variation reconstructions (from left to right).

	[image: _images/walnut_sinogram.png]

	[image: _images/landweber.png]

	[image: _images/total_variation.png]

Contents:

	Installation
	Installation in Python

	Testing correct installation

	Requirements

	Getting started
	Basic principles of gratopy

	First example: Radon transform

	Second example: Fanbeam transform

	Test examples
	Radon transform

	Fanbeam transform

	Function reference
	Definition of geometry

	Transforms

	Solvers

	Data generation

	Internal functions

	Acknowledgements
	Authors, publications and funding

	Used data sets and code

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation

Gratopy supports common Python package distribution frameworks such as
setuptools [https://pypi.org/project/setuptools/] or pip [https://pypi.org/project/pip/].

Installation in Python

The gratopy toolbox can easily be installed using pip [https://pypi.org/project/pip/]

pip install gratopy

Alternatively, the release can be downloaded from https://github.com/kbredies/gratopy and installed (after unpacking inside the corresponding folder) via

pip install .

Also, setuptools [https://pypi.org/project/setuptools/] can be used for installation via

python setup.py install

In case installation fails due to the dependency on other packages (see requirements.txt [https://github.com/kbredies/gratopy/blob/master/requirements.txt]), it is advised to install the packages by hand before retrying to install gratopy. In particular, the PyOpenCL package may require some additional
effort as it depends on additional drivers and C libraries which might needed to be installed by hand. We refer to the documentation of PyOpenCL [https://documen.tician.de/pyopencl/].

Testing correct installation

The release archive (or GitHub repository) includes a tests folder which contains a variety of tests that allow to observe visually and numerically whether gratopy was installed correctly and works as desired.

One can perform these tests by using, for instance, pytest [https://pypi.org/project/pytest/]

pytest

or nose [https://pypi.org/project/nose/]

nosetests

In case multiple OpenCL devices are registered in pyopencl [https://documen.tician.de/pyopencl/runtime.html#module-pyopencl], but the default device is not suitably configured for the tests to work, one might need to choose the context to use manually. This a-priori choice of context to use in pyopencl [https://documen.tician.de/pyopencl/runtime.html#module-pyopencl] can be done via

export PYOPENCL_CTX=<context_number>

The context number can, for instance, be determined in Python by

import pyopencl
pyopencl.create_some_context()

following the interactive instructions and observing the console output.

By default, the plots of the tests are disabled, but can be activated, e.g., by

export GRATOPY_TEST_PLOT=true

Moreover, the Getting started guide contains two example code segments which can be executed to quickly check that no errors occur and the output is as desired.

Requirements

The requirements.txt [https://github.com/kbredies/gratopy/blob/master/requirements.txt] file specifies Python packages
required for the use of gratopy. Amongst them the most relevant are

	pyopencl>=2019.1 [https://pypi.org/project/pyopencl/]

	numpy>=1.17.0 [https://pypi.org/project/numpy/]

	scipy>=1.3.0 [https://pypi.org/project/scipy/]

	matplotlib>=3.2.0 [https://pypi.org/project/matplotlib/]

	Pillow>=6.0.0 [https://pypi.org/project/Pillow/]

	Mako>=1.1.0 [https://pypi.org/project/Mako/]

Most users aiming for scientific computing applications will probably have these packages already installed as they can be considered standard for numerical computations in Python.
Let us again point out that correctly installing PyOpenCL might take some time and effort though, as dependent on the used hardware/GPU, the installation of suitable drivers might be required, see, for instance, https://documen.tician.de/pyopencl/.

Getting started

Basic principles of gratopy

We start by explaining some recurring relevant quantities and concepts in gratopy, in particular the ProjectionSettings
class as well as the use of images and sinograms and the connection of forward projection to backprojection in the context of gratopy.

ProjectionSettings

The cornerstone of the gratopy toolbox is formed by the gratopy.ProjectionSettings class, which defines the considered geometry, collects all relevant
information to create the OpenCL kernels, and precomputes and saves
relevant quantities. Thus, virtually all functions of gratopy require an object of this class, usually referred to as projectionsetting.
In particular, gratopy offers the implementation for two different geometric settings, the parallel beam and the fanbeam setting.

The geometry of the parallel beam setting is mainly defined by the image_width – the physical diameter of the object in question in arbitrary units, e.g., 3 corresponding to 3cm (or m, etc.) – and the detector_width – the physical width of the detector in the same unit –,
both parameters of a projectionsetting. For most standard examples for the Radon transform, these parameters coincide, i.e., the detector is exactly as wide as the diameter of the imaged object, and thus, captures all rays passing through the object.

The fanbeam setting additionally requires RE – the physical distance from the source to the center of rotation –
and R – the physical distance from the source to the detector – to define
the geometry, see the figures below.

Moreover, the projection requires discretization parameters, i.e., the shape of the image to project and the number of detector pixels to map to. Note that these transforms are scaling-invariant in the sense that
rescaling all physical quantities by the same factor creates operators which are rescaled versions of the original ones. On the other hand, changing the number of pixels of the image or the detector leaves the
physical system unchanged and simply reflects a finer/coarser discretization.

The angular range for the parallel beam setting is \([0,\pi[\), while for the fanbeam setting, it is \([0,2\pi[\).
By default, it is assumed that the given angles completely partition the angular range.
In case this is not desired, a limited-angle situation
can be considered by adapting the angles and angle_weights parameters of gratopy.ProjectionSettings, impacting, for instance, the backprojection operator.
Note also that the projections considered are rotation-invariant in the sense, that projection of a rotated image yields a sinogram which is translated in the angular dimension.

Note that the angles are measured (counterclockwise) from the positive x axis and reflect the projection-direction. The positive detector-direction is the clockwise
rotation of the projection-direction by \(\frac \pi 2\).

[image: Depiction of parallel beam geometry]
Geometry of the parallel beam setting.

[image: Depiction of fan beam geometry]
Geometry of the fanbeam setting.

The main functions of gratopy are forwardprojection and backprojection, which use a projectionsetting as the basis for computation and allow to project
an image img onto a sinogram sino and to backproject sino onto img, respectively. Next, we describe how to use and interpret images and sinograms in gratopy.

Images in gratopy

An image img is represented in gratopy by a pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] of dimensions \((N_x,N_y)\)
– or \((N_x,N_y,N_z)\) for multiple slices – representing a rectangular grid of equidistant quadratic pixels of size \(\delta_x=\mathrm{image_width}/\max\{N_x,N_y\}\),
where the associated values correspond to the average mass inside the area covered by each pixel. The area covered by the pixels is called the image domain, and the image array
can be associated with a piecewise constant function on the image domain. Usually, we think of the investigated object as being circular and contained in
the rectangular image domain. More generally, image_width corresponds to the larger side length of a rectangular \((N_x,N_y)\) grid of quadratic image pixels
which allows considering slim objects.
The image domain is, however, always a rectangle or square
that is aligned with the x and y axis.
When using an image together with projectionsetting – an instance of gratopy.ProjectionSettings – the values \((N_x,N_y)\) have to coincide with the attribute img_shape of projectionsetting, we say they need to be compatible. The data type
of this array must be numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32] or numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64], i.e., single or double precision, and can have either C or F contiguity [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array].

Note that in gratopy, the first and second axis of an image array corresponds to the x and y axis, respectively,
as depicted in the figures above.

Sinograms in gratopy

Similarly, a sinogram sino is represented by a pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] of the shape \((N_s,N_a)\) or \((N_s,N_a,N_z)\) for \(N_s\) being the number of detectors and \(N_a\) being the number of angles for which projections are considered.
When used together with a projectionsetting of class gratopy.ProjectionSettings, these dimensions must be compatible, i.e., \((N_s,N_a)\) has to coincide with the sinogram_shape attribute of projectionsetting.
The width of the detector is given by the attribute detector_width of projectionsetting and the detector pixels are equidistantly partitioning the detector line with detector pixel width
\(\delta_s=\mathrm{detector_width}/N_s\). The angles, on the other hand, do not need to be equidistant or even partition the entire angular range; gratopy allows for rather general angle sets. The values associated with pixels in the sinogram again correspond to the average
intensity values of a continuous sinogram counterpart and thus can be associated with a piecewise constant function. The data type of this array must be numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32] or numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64], i.e., single or double precision, and can have either C or F contiguity [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array].

Adjointness in gratopy

Gratopy allows a great variety of geometric setups for the forward
projection and the backprojection. One particular feature is
that forward projection and backprojection are adjoint operators,
which is important, for instance, in the
context of optimization algorithms. Here, adjointness is achieved
with respect to natural scalar products in image and sinogram Hilbert space
that we wish to clarify in the following.
As described above, the discrete values in an image array are associated
with values of piecewise constant functions inside square pixels
(of area \(\delta_x^2\)) in the image domain.
For such piecewise constant functions, the classical \(L^2\) scalar product
is considered, which results in \(\langle \text{img1}, \text{img2} \rangle = \delta_x^2 \sum_{x,y} \text{img1}_{x,y} \text{img2}_{x,y}\)
for image arrays img1 and img2.
Similarly, the discrete values of the sinogram are associated with a piecewise
constant function on the Cartesian product of an interval of length
detector_width and the angular domain. Correspondingly, the natural inner product for the sinogram space is given by
\(\langle \text{sino1}, \text{sino2} \rangle = \delta_s \sum_{s,a} \Delta_a \text{sino1}_{s,a} \text{sino2}_{s,a}\), where \(\Delta_a\)
denotes the length of the angular range covered (in the sense of piecewise constant discretization)
by the a-th angle (by default, all \(\Delta_a\) are determined automatically based on the angles parameter, for more information on angle_weights, see gratopy.ProjectionSettings).
Hence, the implementations of the forward and backprojection in gratopy are to be understood in this
context, and in particular, the forward projection and backprojection operator are adjoint
with respect to these scalar products, as can be observed in tests.test_radon.test_adjointness() and tests.test_fanbeam.test_adjointness().

Though this is, in a sense, the natural discretization and sense of adjointness, it might be
of interest to consider adjointness in a different sense. In this respect,
gratopy allows to alter the sinogram space by manually
setting the angle weights \((\Delta_a)_a\)
to desired values, which changes the weights in the backprojection,
but always leads to an adjoint operator in the sense of the aforementioned
scalar products.

For example, all angles can be weighted equally with 1 in a sparse angle
setting. When setting angle_weights \(\Delta_a=\frac {\delta_x^2}{\delta_s}\),
the operators are adjoint with respect to the standard scalar products
\(\langle \text{img1}, \text{img2} \rangle = \sum_{x,y}\text{img1}_{x,y}\text{img2}_{x,y}\)
and \(\langle \text{sino1}, \text{sino2} \rangle = \sum_{s,a} \text{sino1}_{s,a}\text{sino2}_{s,a}\).

First example: Radon transform

One can start in Python via the following simple code which computes the forward
and backprojection of a phantom:

initial import
import numpy as np
import pyopencl as cl
import matplotlib.pyplot as plt

import gratopy

discretization parameters
number_angles = 60
number_detectors = 300
Nx = 300
Alternatively to number_angles one could give as angle input
angles = np.linspace(0, np.pi, number_angles+1)[:-1]

create pyopencl context
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

create phantom as test image (a pyopencl.array.Array of dimensions (Nx, Nx))
phantom = gratopy.phantom(queue,Nx)

create suitable projectionsettings
PS = gratopy.ProjectionSettings(queue, gratopy.RADON, phantom.shape,
 number_angles, number_detectors)

compute forward projection and backprojection of created sinogram
results are pyopencl arrays
sino = gratopy.forwardprojection(phantom, PS)
backproj = gratopy.backprojection(sino, PS)

plot results
plt.figure()
plt.title("Generated Phantom")
plt.imshow(phantom.get(), cmap="gray")

plt.figure()
plt.title("Sinogram")
plt.imshow(sino.get(), cmap="gray")

plt.figure()
plt.title("Backprojection")
plt.imshow(backproj.get(), cmap="gray")
plt.show()

The following depicts the plots created by this example.

	[image: _images/phantom-1.png]

	[image: _images/sinogram-1.png]

	[image: _images/backprojection-1.png]

Second example: Fanbeam transform

As a second example, we consider a fanbeam geometry that has a detector that is 120 (cm) wide, the distance from the the source to the center of rotation is 100 (cm),
while the distance from the source to the detector is 200 (cm). We do not choose the image_width but rather let gratopy automatically determine a suitable image_width. We visualize the defined geometry via the gratopy.ProjectionSettings.show_geometry method.

initial import
import numpy as np
import pyopencl as cl
import matplotlib .pyplot as plt

import gratopy

discretization parameters
number_angles = 60
number_detectors = 300
image_shape = (500, 500)

create pyopencl context
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

physical parameters
my_detector_width = 120
my_R = 200
my_RE = 100

fanbeam setting with automatic image_width
PS1 = gratopy.ProjectionSettings(queue, gratopy.FANBEAM,
 img_shape=image_shape,
 angles=number_angles,
 n_detectors=number_detectors,
 detector_width=my_detector_width,
 R=my_R, RE=my_RE)

print("image_width chosen by gratopy: {:.2f}".format((PS1.image_width)))

fanbeam setting with set image_width
my_image_width = 80.0
PS2 = gratopy.ProjectionSettings(queue, gratopy.FANBEAM,
 img_shape=image_shape,
 angles=number_angles,
 n_detectors=number_detectors,
 detector_width=my_detector_width,
 R=my_R, RE=my_RE,
 image_width=my_image_width)

plot geometries associated to these projectionsettings
fig, (axes1, axes2) = plt.subplots(1,2)
PS1.show_geometry(np.pi/4, figure=fig, axes=axes1, show=False)
PS2.show_geometry(np.pi/4, figure=fig, axes=axes2, show=False)
axes1.set_title("Geometry chosen by gratopy as: {:.2f}".format((PS1.image_width)))
axes2.set_title("Geometry for manually-chosen image_width as: {:.2f}"
 .format((my_image_width)))
plt.show()

Once the geometry has been defined via the projectionsetting, forward and backprojections can be used just like for the Radon transform in the first example.
Note that the automatism of gratopy chooses image_width = 57.46 (cm). When looking at the corresponding plot via gratopy.ProjectionSettings.show_geometry, the image_width is such that the entirety of an object inside
the blue circle (with diameter 57.46) is exactly captured by each projection, and thus, the area represented by the image corresponds to the yellow rectangle and blue circle which is the smallest rectangle to capture the entire object. On the other hand, the outer red circle illustrates the diameter of the smallest circular object entirely containing the image.

[image: _images/figure-1.png]
Plot produced by gratopy.ProjectionSettings.show_geometry for the fanbeam setting with automatic and manually chosen image_width, both for projection from 45°.

Further examples can be found in the source files of the Test examples.

Test examples

The following documents a number of tests covering essentially
all functions and features contained in the package. These functions
serve the double purpose of showing that the package
is indeed working as desired (via pytest or nosetests, see Installation),
and illustrating to users how to set various parameters of the
gratopy toolbox and what their effect are (cf. the source code for the tests).

The tests are also able to
produce plots of the results. To turn on plotting, the
environment variable GRATOPY_TEST_PLOT needs to be set, e.g.
the command

GRATOPY_TEST_PLOT=true pytest

can be issued in the gratopy directory.

Radon transform

	
tests.test_radon.test_projection()

	Basic projection test. Simply computes forward and backprojection
of the Radon transform for two test images in order to visually confirm
the correctness of the method. This projection is repeated 10 times to
estimate the required time per execution.

	
tests.test_radon.test_types_contiguity()

	Types and contiguity test.
Runs forward and backprojections for parallel beam geometry
for different precision and contiguity settings,
checking that they all lead to the same results.

	
tests.test_radon.test_weighting()

	Mass preservation test. Check whether the total mass of an image
(square with side length 4/3 and pixel values, i.e. density, 1)
is correctly transported into the total mass of a projection, i.e.,
the scaling is adequate.

	
tests.test_radon.test_adjointness()

	Adjointness test. Creates random images
and sinograms to check whether forward and backprojection are indeed
adjoint to one another (by comparing the corresponding dual pairings).
This comparison is carried out for 100 experiments to affirm adjointness
with some certainty.

	
tests.test_radon.test_nonquadratic()

	Non-quadratic image test. Tests and illustrates the projection
operator for non-quadratic images.

	
tests.test_radon.test_limited_angles()

	Limited angle test. Tests and illustrates how to set the angles in case
of limited angle situation, in particular showing artifacts resulting
from the incorrect use for the limited angle setting
(leading to undesired angle_weights). This can be achieved
through the format of the angles parameter
or by setting the angle_weights directly as shown in the test.

	
tests.test_radon.test_angle_input_variants()

	Angle parameter input test.
Illustrates all possibilities to specify projection angles, checks
the resulting angles and angle_weights as well as
tests the possibility
to set the angle_weights manually.

	
tests.test_radon.test_midpoint_shift()

	Shifted midpoint test.
Tests and illustrates how the sinogram changes if the midpoint of an
images is shifted away from the center of rotation.

	
tests.test_radon.test_create_sparse_matrix()

	Tests the create_sparse_matrix
method to create a sparse matrix
associated with the transform, and tests it by applying forward and
backprojection via matrix multiplication.

Fanbeam transform

	
tests.test_fanbeam.test_projection()

	Basic projection test. Computes the forward and backprojection of
the fanbeam transform for two test images to visually confirm the
correctness of the method. This projection is repeated 10 times to
estimate the required time per execution.

	
tests.test_fanbeam.test_types_contiguity()

	Types and contiguity test.
Types and contiguity test.
Runs forward and backprojections for fanbeam geometry
for different precision and contiguity settings,
checking that they all lead to the same results.

	
tests.test_fanbeam.test_weighting()

	Mass preservation test. Checks whether the total mass of an image
is correctly transported into the total mass of a projection.
Due to the fan geometry, the width of a projected object on the detector is
wider than the original object was, as the width of the fan grows linearly
with the distance it travels. Consequently, also the total mass on the
detector is roughly the multiplication of the total mass in the
object by the ratio R to RE. This estimate is verified
numerically.

	
tests.test_fanbeam.test_adjointness()

	Adjointness test. Creates random images
and sinograms to check whether forward and backprojection are indeed
adjoint to one another (by comparing the corresponding dual pairings).
This comparison is carried out for 100 experiments to affirm adjointness
with some certainty.

	
tests.test_fanbeam.test_nonquadratic()

	Non-quadratic image test. Tests and illustrates the projection
operator for non-quadratic images.

	
tests.test_fanbeam.test_limited_angles()

	Limited angle test. Tests and illustrates how to set the angles in case
of limited angle situation, in particular showing artifacts resulting
from the incorrect use for the limited angle setting
(leading to undesired angle_weights). This can be achieved
through the format of the angles parameter
or by setting the angle_weights directly as shown in the test.

	
tests.test_fanbeam.test_midpoint_shift()

	Shifted midpoint test.
Tests and illustrates how the sinogram changes if the midpoint of an
images is shifted away from the center of rotation.

	
tests.test_fanbeam.test_geometric_orientation()

	Geometric orientation test.
Considers projections with parallel and fanbeam geometry for very simple
images in different shifted geometries to illustrate how the geometry of
the projection work and that they indeed behave analogously
for parallel and fanbeam setting. Note that the axes of the images shown
by matplotlib.pyplot.imshow() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow] are always rotated by 90
degrees compared to the standard (x, y)-axes.

	
tests.test_fanbeam.test_range_check_walnut()

	The walnut data set from [HHKKNS2015] is considered
for testing the implementation.
This test observes that with suitable parameters, the data is
well-explained by the model defined by gratopy’s operators. In particular,
one can observe that there is a slight imperfection in the data set as
the detector is not perfectly centered. Indeed, the total
mass of the upper detector-half theoretically
needs to coincide with the lower detector-half’s total mass
(up to numerical precision), but these values differ significantly.
Moreover, this test serves to verify the validity of the conjugate
gradients (CG) method. It is well-known that the CG algorithm
approximates the minimal-norm least squares solution to the data,
and in particular,
the forward projection of this solution corresponds to the projection
of data onto the range of the operator. As depicted in the
plots of the residual data shown by this test,
the walnut projection data admit, after detector_shift correction,
only slight intensity variations as systematic error.

[HHKKNS2015]
(1,2,3,4)
Keijo Hämäläinen and Lauri Harhanen and Aki Kallonen and
Antti Kujanpää and Esa Niemi and Samuli Siltanen.
“Tomographic X-ray data of a walnut”.
https://arxiv.org/abs/1502.04064

	
tests.test_fanbeam.test_landweber()

	Landweber reconstruction test. Performs the Landweber iteration
to compute a reconstruction from a sinogram contained in
the walnut data set of [HHKKNS2015], testing the implementation.

	
tests.test_fanbeam.test_conjugate_gradients()

	Conjugate gradients reconstruction test.
Performs the conjugate gradients iteration
to compute a reconstruction from a sinogram contained in
the walnut data set of [HHKKNS2015], testing the implementation.

	
tests.test_fanbeam.test_total_variation()

	Total variation reconstruction test.
Performs the toolbox’s total-variation-based approach
to compute a reconstruction from a sinogram contained in
the walnut data set of [HHKKNS2015], testing the implementation.

	
tests.test_fanbeam.test_create_sparse_matrix()

	Tests the create_sparse_matrix
method to create a sparse matrix
associated with the transform, and tests it by applying forward and
backprojection via matrix multiplication.

Function reference

Definition of geometry

A cornerstone in applying projection methods is to define for which geometry the projection has to be computed.
Thus, the first step in using gratopy is always creating an instance of gratopy.ProjectionSettings defining the geometry, and thus internally precomputing relevant quantities.

	
class gratopy.ProjectionSettings(queue, geometry, img_shape, angles, n_detectors=None, angle_weights=None, detector_width=2.0, image_width=None, R=None, RE=None, detector_shift=0.0, midpoint_shift=[0.0, 0.0], reverse_detector=False)

	Creates and stores all relevant information concerning
the projection geometry. Serves as a parameter for virtually all
gratopy’s functions.

	Parameters:

	
	queue (pyopencl.CommandQueue [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue]) – The OpenCL command queue with which the computations
are associated.

	geometry (int [https://docs.python.org/dev/library/functions.html#int]) – Determines whether parallel beam (gratopy.RADON)
or fanbeam geometry (gratopy.FANBEAM)
is considered.

	img_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] \((N_x,N_y)\)) – The number of pixels of the image in x- and
y-direction respectively, i.e., the image dimension.
It is assumed that by default, the center of rotation is in
the middle of the grid of quadratic pixels. The midpoint can,
however, be shifted, see the midpoint_shift parameter.

	angles (int [https://docs.python.org/dev/library/functions.html#int], list[float] / numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray],
list[tuple(int/list[float]/numpy.ndarray, float, float)]) – Determines which angles are considered for
the projection. An integer is interpreted as the number \(N_a\)
of uniformly distributed angles in the angular range
\([0,\pi[\), \([0,2\pi[\)
for Radon and fanbeam transform, respectively, where for negative
integers the same angles according to its modulus but with reversed
order are generated.
Alternatively, the angles can be given explicitly as a list [https://docs.python.org/dev/library/stdtypes.html#list] or
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. These two options also imply a full angle
setting (as opposed to limited angle setting).

A limited angle setting can be specified in two ways.
First, a list of angular range sections can be passed as input.
An angular range section is a tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] with either
an integer or a list/array of angles (first element) together with a
pair specifying the lower and upper bound of the angular range
interval (second and third element), i.e., of type
tuple(int, float, float)
or tuple(list[float], float, float).
If the first element is an integer, the angular interval will be
uniformly partitioned into the modulus number of angles
(note that the first
and last angles are not the lower/upper bounds to ensure
uniform angle weights) again in increasing or decreasing order,
depending on the sign.
Otherwise, a list or array
specifying the individual angles is expected.
In particular, multiple angular sections can be specified,
by passing a list of angular range sections.

Alternatively, one can use a list of angles
and set angle_weigths (see below) manually
to suitable values by passing a scalar, a list or an array.

	n_detectors (int [https://docs.python.org/dev/library/functions.html#int], default None [https://docs.python.org/dev/library/constants.html#None]) – The number \(N_s\) of (equi-spaced) detector
pixels considered. When None [https://docs.python.org/dev/library/constants.html#None], \(N_s\)
will be chosen as \(\sqrt{N_x^2+N_y^2}\).

	angle_weights (None [https://docs.python.org/dev/library/constants.html#None], float [https://docs.python.org/dev/library/functions.html#float],
list[float] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray],
default None [https://docs.python.org/dev/library/constants.html#None]) – The weights \((\Delta_a)_a\)
associated with the angles,
which influences the weighting of the rays for the backprojection.
See Adjointness in gratopy for a more detailed description.
If None [https://docs.python.org/dev/library/constants.html#None] (by default), the weights are computed
automatically based on the angles parameter.
In the full angle setting, this automatism considers a partition
of the half circle for parallel beam
and the full circle for fanbeam geometry based on the
given angles and sets the angle weight to the average of
the distances from of an angle to its two neighbors
(in the sense of a circle).
Similarly, in the limited angle case, each angle section is
partitioned by the angles associated with this section and
the weights are chosen taking additionally
the boundary of the section into
account.
In case of a scalar input, this scalar will be used as the
(constant) angle weight for all angles.
Further, all angle weights can directly be set by passing
an input of type list[float] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of
suitable length.

	detector_width (float [https://docs.python.org/dev/library/functions.html#float], default 2.0) – Physical length of the detector. For standard
Radon transformation this can usually remain fixed at the default value
(together with image_width).

	image_width (float [https://docs.python.org/dev/library/functions.html#float], default None [https://docs.python.org/dev/library/constants.html#None]) – Physical size of the image
indicated by the length of
the longer side of the rectangular image domain.
For parallel beam geometry, when None [https://docs.python.org/dev/library/constants.html#None],
image_width is chosen as 2.0.
For fanbeam geometry, when None [https://docs.python.org/dev/library/constants.html#None], image_width is chosen
such that the projections exactly capture the image domain.
To illustrate, choosing image_width = detector_width results
in the standard Radon transform with each projection touching
the entire object, while img_width = 2 detector_width
results in each projection capturing only
half of the image.

	R (float [https://docs.python.org/dev/library/functions.html#float], must be set for fanbeam geometry) – Physical (orthogonal) distance from source
to detector line. Has no impact for parallel beam geometry.

	RE (float [https://docs.python.org/dev/library/functions.html#float], must be set for fanbeam geometry) – Physical distance from source to origin
(center of rotation).
Has no impact for parallel beam geometry.

	detector_shift (list[float], default 0.0) – Physical shift of all detector pixels
along the detector line.
Defaults to the application of no shift, i.e.,
the detector pixels span the range
[-detector_width/2, detector_width/2].

	midpoint_shift (list [https://docs.python.org/dev/library/stdtypes.html#list], default [0.0, 0.0]) – Two-dimensional vector representing the
shift of the image away from center of rotation.
Defaults to the application of no shift, i.e., the center
of rotation is also the center of the image.

	reverse_detector (bool [https://docs.python.org/dev/library/functions.html#bool], default False) – When True, the detector direction
is flipped in case of fanbeam geometry, i.e., the positive and
negative detector positions are swapped.
This parameter has no effect for parallel geometry. When
activated together with swapping the sign of the angles,
this has the same effect for projection as mirroring the image.

These input parameters create attributes of the same name in
an instance of ProjectionSettings, though the corresponding
values might be slightly restructured by internal processes.
Further useful attributes are listed below. It is advised not to set
these attributes directly but rather to choose suitable input
parameters for the initialization.

	Variables:

	
	is_parallel (bool [https://docs.python.org/dev/library/functions.html#bool]) – True [https://docs.python.org/dev/library/constants.html#True] if the geometry is for parallel beams,
False [https://docs.python.org/dev/library/constants.html#False] otherwise.

	is_fan (bool [https://docs.python.org/dev/library/functions.html#bool]) – True [https://docs.python.org/dev/library/constants.html#True] if the geometry is for fanbeam geometry,
False [https://docs.python.org/dev/library/constants.html#False] otherwise.

	angles (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Angles from which projections are considered.

	n_angles (int [https://docs.python.org/dev/library/functions.html#int]) – Number of all angles \(N_a\).

	sinogram_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] \((N_s,N_a)\)) – Represents the number of considered
detectors (n_detectors) and angles (n_angles).

	delta_x (float [https://docs.python.org/dev/library/functions.html#float]) – Physical width and height \(\delta_x\) of
the image pixels.

	delta_s (float [https://docs.python.org/dev/library/functions.html#float]) – Physical width \(\delta_s\) of a detector pixel.

	delta_ratio (float [https://docs.python.org/dev/library/functions.html#float]) – Ratio \({\delta_s}/{\delta_x}\),
i.e. the detector
pixel width relative to unit image pixels.

	angle_weights (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Represents the angular discretization
width for each angle which are used to weight the projections, see
parameter angle_weights above. When none was given as input,
the angle_weights chosen by the automatism will be written to this
variable.

	prg (gratopy.Program) – OpenCL program containing the gratopy OpenCL kernels.
For the corresponding code, see gratopy.create_code

	struct (dict [https://docs.python.org/dev/library/stdtypes.html#dict] see radon_struct() and
fanbeam_struct() returns) – Data used in the projection operator.
Contains in particular dictionaries of
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] associated to precision single and double
with the angular information necessary for computations.

	
create_sparse_matrix(dtype=dtype('float32'), order='F')

	Creates a sparse matrix representation of the associated forward
projection.

	Parameters:

	
	dtype (numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype], default numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32]) – Precision to compute the sparse representation in.

	order (str [https://docs.python.org/dev/library/stdtypes.html#str], default F) – Contiguity of the image and sinogram array
to the transform, can be F or C.

	Returns:

	Sparse matrix corresponding to the
forward projection.

	Return type:

	scipy.sparse.coo_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix]

Note that for high resolution projection operators,
this may require infeasibly much time and memory.

	
show_geometry(angle, figure=None, axes=None, show=True)

	Visualize the geometry associated with the projection settings.
This can be useful in checking that indeed, the correct input
for the desired geometry was given.

	Parameters:

	
	angle (float [https://docs.python.org/dev/library/functions.html#float]) – The angle for which the projection
is considered.

	figure (matplotlib.figure.Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure], default None [https://docs.python.org/dev/library/constants.html#None]) – Figure in which to plot. If neither figure nor
axes are given, a new figure (figure(0)) will be created.

	axes (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes], default None [https://docs.python.org/dev/library/constants.html#None]) – Axes to plot into. If None [https://docs.python.org/dev/library/constants.html#None], a new
axes inside the figure is created.

	show (bool [https://docs.python.org/dev/library/functions.html#bool], default True [https://docs.python.org/dev/library/constants.html#True]) – Determines whether the resulting plot is immediately
shown (True [https://docs.python.org/dev/library/constants.html#True]).
If False [https://docs.python.org/dev/library/constants.html#False], matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] can be used
at a later point to show the figure.

	Returns:

	Figure and axes in which the geometry visualization
is plotted.

	Return type:

	tuple(matplotlib.figure.Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure],
matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes])

Transforms

The functions forwardprojection() and backprojection() perform the projection operations based on the geometry defined in projectionsetting. The images img and the sinograms sino need to be interpreted and
behave as described in Getting started.

	
gratopy.forwardprojection(img, projectionsetting, sino=None, wait_for=[])

	Performs the forward projection (either for the Radon or the
fanbeam transform) of a given image using the given projection
settings.

	Parameters:

	
	img (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] with
compatible dimensions) – The image to be transformed.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the forward
transform is computed.

	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] with
compatible dimensions,
default None [https://docs.python.org/dev/library/constants.html#None]) – The array in which the result of transformation
is saved. If None [https://docs.python.org/dev/library/constants.html#None] (per default) is given, a new array
will be created and returned.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the
computation in order to avoid, e.g., race conditions, see
pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event]. This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	The sinogram associated with the projection of the image.
If the sino is not None [https://docs.python.org/dev/library/constants.html#None], the same pyopencl [https://documen.tician.de/pyopencl/runtime.html#module-pyopencl] array
is returned with the values in its data overwritten.

	Return type:

	pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]

The forward projection can be performed for single or double
precision arrays. The dtype (precision) of img and sino (if given)
have to coincide and the output will be of the same precision.
It respects any combination of C and F contiguous arrays where
output will be of the same contiguity as img if no sino is given.
The OpenCL events associated with the transform will be added to the
output’s events. In case the output array is created, it will use the
allocator of img. If the image and sinogram have a third dimension
(z-direction) the operator is applied slicewise.

	
gratopy.backprojection(sino, projectionsetting, img=None, wait_for=[])

	Performs the backprojection (either for the Radon or the
fanbeam transform) of a given sinogram using the given projection
settings.

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] with
compatible dimensions) – Sinogram to be backprojected.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the forward
transform is computed.

	img (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] with
compatible dimensions,
default None [https://docs.python.org/dev/library/constants.html#None]) – The array in which the result of backprojection is saved.
If None [https://docs.python.org/dev/library/constants.html#None] is given, a new array will be created and returned.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the
computation in order to avoid, e.g., race conditions, see
pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event]. This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	The image associated with the backprojected sinogram,
coinciding with the img if not None [https://docs.python.org/dev/library/constants.html#None], with the values
in its data overwritten.

	Return type:

	pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]

The backprojection can be performed for single or double
precision arrays. The dtype (precision) of img and sino have
to coincide. If no img is given, the output precision coincides
with sino’s. The operation respects any combination of
C and F contiguous
arrays, where if img is None [https://docs.python.org/dev/library/constants.html#None], the result’s contiguity coincides
with sino’s. The OpenCL events associated with the transform will be
added to the output’s events.
In case the output array is created, it will
use the allocator of sino. If the sinogram and image have a third
dimension (z-direction), the operator is applied slicewise.

Solvers

Based on these forward and backward operators, one can implement a variety of reconstruction algorithms, where the toolbox’s focus is on iterative methods (as those in particular are dependent on efficient implementation).
The following constitute a few easy-to-use examples which also serve as illustration on how gratopy can be included in custom pyopencl [https://documen.tician.de/pyopencl/runtime.html#module-pyopencl] implementations.

	
gratopy.landweber(sino, projectionsetting, number_iterations=100, w=1)

	Performs a Landweber iteration [L1951] to approximate
a solution to the image reconstruction problem associated
with a projection and sinogram. This method is also known as SIRT.

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – Sinogram data to reconstruct from.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the projection
is considered.

	number_iterations (int [https://docs.python.org/dev/library/functions.html#int], default 100) – Number of iteration steps to be performed.

	w (float [https://docs.python.org/dev/library/functions.html#float], default 1) – Relaxation parameter weighted by the norm of the projection
operator (w<1 guarantees convergence).

	Returns:

	Reconstruction from given sinogram gained via Landweber
iteration.

	Return type:

	pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]

[L1951]
Landweber, L. “An iteration formula for Fredholm integral
equations of the first kind.” Amer. J. Math. 73, 615–624
(1951). https://doi.org/10.2307/2372313

	
gratopy.conjugate_gradients(sino, projectionsetting, number_iterations=20, epsilon=0.0, x0=None)

	Performs a conjugate gradients iteration [HS1952] to approximate
a solution to the image reconstruction problem associated
with a projection and sinogram.

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – Sinogram data to invert.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the projection
is considered.

	number_iterations (float [https://docs.python.org/dev/library/functions.html#float], default 20) – Maximal number of iteration steps
to be performed.

	x0 (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array], default None [https://docs.python.org/dev/library/constants.html#None]) – Initial guess for iteration (defaults to zeros if
None [https://docs.python.org/dev/library/constants.html#None]).

	epsilon (float [https://docs.python.org/dev/library/functions.html#float], default 0.00) – Tolerance parameter, the iteration stops if
relative residual<epsilon.

	Returns:

	Reconstruction gained via conjugate gradients iteration.

	Return type:

	pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]

[HS1952]
Hestenes, M. R., Stiefel, E. “Methods of Conjugate Gradients
for Solving Linear Systems.” Journal of Research of
the National
Bureau of Standards, 49:409–436 (1952).
https://doi.org/10.6028/jres.049.044

	
gratopy.total_variation(sino, projectionsetting, mu, number_iterations=1000, slice_thickness=1.0, stepsize_weighting=10.0)

	Performs a primal-dual algorithm [CP2011] to solve a total-variation
regularized reconstruction problem associated with a given
projection operator and sinogram. This corresponds to the approximate
solution of
\(\min_{u} {\frac\mu2}\|\mathcal{P}u-f\|_{L^2}^2+\mathrm{TV}(u)\)
for \(\mathcal{P}\) the projection operator, \(f\) the sinogram
and \(\mu\) a positive regularization parameter (i.e.,
an \(L^2-\mathrm{TV}\) reconstruction approach).

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – Sinogram data to invert.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the projection
is considered.

	mu – Regularization parameter, the smaller the stronger the
applied regularization.

	number_iterations (float [https://docs.python.org/dev/library/functions.html#float], default 1000) – Number of iterations to be performed.

	slice_thickness (float [https://docs.python.org/dev/library/functions.html#float], default 1.0, i.e., isotropic voxels) – When 3-dimensional data sets are considered,
regularization is also applied across slices.
This parameter represents the ratio of the slice thickness to the
length of one pixel within a slice. The choice
slice_thickness =0
results in no coupling across slices.

	stepsize_weighting (float [https://docs.python.org/dev/library/functions.html#float], default 10.0) – Allows to weight the primal-dual algorithm’s
step sizes \(\sigma\) (stepsize for dual update) and \(\tau\)
(stepsize for primal update)
(with \(\sigma\tau\|\mathcal{P}\|^2\leq 1\))
by multiplication and division, respectively,
with the given value.

	Returns:

	Reconstruction gained via primal-dual iteration for the
total-variation regularized reconstruction problem.

	Return type:

	pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]

[CP2011]
Chambolle, A., Pock, T. “A First-Order Primal-Dual Algorithm
for Convex Problems with Applications to Imaging.” J Math
Imaging Vis 40, 120–145 (2011).
https://doi.org/10.1007/s10851-010-0251-1

	
gratopy.normest(projectionsetting, number_iterations=50, dtype='float32', allocator=None)

	Estimate the spectral norm of the projection operator via power
iteration, i.e., the operator norm with respect to the
norms discussed in section concerning adjointness.
Useful for iterative methods that require such an estimate,
e.g., landweber() or total_variation().

	Parameters:

	
	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the projection
is considered.

	number_iterations (int [https://docs.python.org/dev/library/functions.html#int], default 50) – The number of iterations to
terminate after.

	dtype (numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype], default numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32]) – Precision for which to apply the projection operator
(which is not supposed to impact the estimate significantly).

	Returns:

	An estimate of the spectral norm for the projection operator.

	Return type:

	float [https://docs.python.org/dev/library/functions.html#float]

	
gratopy.weight_sinogram(sino, projectionsetting, sino_out=None, divide=False, wait_for=[])

	Performs an angular rescaling of a given sinogram via multiplication
(or division) with the projection’s angle weights (size of projections in
angle dimension, see attributes of ProjectionSettings)
to the respective projections.
This can be useful, e.g., for computing norms or dual
pairings in the appropriate Hilbert space.

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The sinogram whose rescaling is computed.
This array itself remains unchanged unless the same array is given
as sino_out.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the rescaling
is computed.

	sino_out (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array] default None [https://docs.python.org/dev/library/constants.html#None]) – The array in which the result of rescaling
is saved. If None [https://docs.python.org/dev/library/constants.html#None] (per default) is given, a new array
will be created and returned. When giving the same array as
sino, the values in sino will be overwritten.

	divide (bool [https://docs.python.org/dev/library/functions.html#bool], default False [https://docs.python.org/dev/library/constants.html#False]) – Determines whether the sinogram is
divided (instead of multiplied) by the angular weights. If True [https://docs.python.org/dev/library/constants.html#True],
a division is performed, otherwise, the weights are multiplied.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the
computation in order to avoid, e.g., race conditions, see
pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event].
This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	The weighted sinogram.
If sino_out is not None [https://docs.python.org/dev/library/constants.html#None], it
is returned with the values in its data overwritten. In particular,
giving the same array for sino and sino_out will overwrite this array.

	Return type:

	pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]

Data generation

For convenient testing, a phantom generator is included which creates a modified two-dimensional phantom of arbitrary size.

	
gratopy.phantom(queue, N, modified=True, E=None, ret_E=False, dtype='double', allocator=None)

	Generate an OpenCL Shepp-Logan phantom of size (N, N).

	Parameters:

	
	queue (pyopencl.CommandQueue [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue]) – The OpenCL command queue.

	N (int [https://docs.python.org/dev/library/functions.html#int] or array_like) – Matrix size, (N, N) or (M, N).

	modified (bool [https://docs.python.org/dev/library/functions.html#bool]) – Use original gray-scale values as given in [SL1974].
Most implementations use modified values for better contrast (for
example, see [2] and [3]).

	E (array_like or None [https://docs.python.org/dev/library/constants.html#None]) – \(e \times 6\) numeric matrix defining \(e\) ellipses.
The six columns of E are:

	Gray value of the ellipse (in [0, 1])

	Length of the horizontal semi-axis of the ellipse

	Length of the vertical semi-axis of the ellipse

	x-coordinate of the center of the ellipse (in [-1, 1])

	y-coordinate of the center of the ellipse (in [-1, 1])

	Angle between the horizontal semi-axis of the ellipse
and the x-axis of the image (in rad)

	ret_E (bool [https://docs.python.org/dev/library/functions.html#bool]) – Return the matrix E used to generate the phantom.

	dtype (str [https://docs.python.org/dev/library/stdtypes.html#str] or numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]) – The pyopencl [https://documen.tician.de/pyopencl/runtime.html#module-pyopencl] data type in which the phantom is created.

	allocator (An implementation of pyopencl.tools.AllocatorInterface or None [https://docs.python.org/dev/library/constants.html#None]) – The pyopencl [https://documen.tician.de/pyopencl/runtime.html#module-pyopencl] allocator used for memory allocation.

	Returns:

	Phantom/parameter pair (ph [, E]).

	Variables:

	
	ph (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The Shepp-Logan phantom.

	E (array_like, optional) – The ellipse parameters used to generate ph.

This much abused phantom is due to [SL1974]. The tabulated values in
the paper are reproduced in the Wikipedia entry [1]. The
original values do not produce great contrast, so modified values
are used by default (see Table B.1 in [TS1996] or implementations
[2] and [3]).

[SL1974]
(1,2)
Shepp, Lawrence A., and Benjamin F. Logan. “The Fourier
reconstruction of a head section.” IEEE Transactions on
nuclear science 21.3 (1974): 21-43.

[TS1996]
Toft, Peter Aundal, and John Aasted Sørensen. “The Radon
transform-theory and implementation.” (1996).

[1]
https://en.wikipedia.org/wiki/Shepp%E2%80%93Logan_phantom

[2]
(1,2)
https://sigpy.readthedocs.io/en/latest/_modules/sigpy/sim.html#shepp_logan

[3]
(1,2)
http://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom

Internal functions

The following contains the documentation for a set of internal functions which could be of interest for developers. Note that these might be subject to change in the future.

	
gratopy.radon(sino, img, projectionsetting, wait_for=[])

	Performs the Radon transform of a given image using the
given projectionsetting.

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The array in which the resulting sinogram is written.

	img (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The image to transform.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the
Radon transform is performed.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the computation
in order to avoid, e.g., race conditions, see pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event].
This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	Event associated with the computation of the
Radon transform (which is also added to the events of sino).

	Return type:

	pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event]

	
gratopy.radon_ad(img, sino, projectionsetting, wait_for=[])

	Performs the Radon backprojection of a given sinogram using
the given projectionsetting.

	Parameters:

	
	img (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The array in which the resulting backprojection is
written.

	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The sinogram to transform.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the
Radon backprojection is performed.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the computation
in order to avoid, e.g., race conditions, see pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event].
This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	Event associated with the computation of the Radon
backprojection
(which is also added to the events of img).

	Return type:

	pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event]

	
gratopy.radon_struct(queue, img_shape, angles, angle_weights, n_detectors=None, detector_width=2.0, image_width=2.0, midpoint_shift=[0, 0], detector_shift=0.0)

	Creates the structure storing geometry information required for
the Radon transform and its adjoint.

	Parameters:

	
	queue (pyopencl.CommandQueue [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue]) – OpenCL command queue in which context the
computations are to be performed.

	img_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] \((N_x,N_y)\)) – The number of pixels of the image in x- and
y-direction respectively, i.e., the image size.
It is assumed that by default, the center of rotation is in
the middle of the grid of quadratic pixels. The midpoint can,
however, be shifted, see the midpoint_shift parameter.

	angles (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Determines which angles are considered for the
projection.

	angle_weights (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The weights associated to the angles, e.g.,
how much of the angular range is covered by this angle.
This impacts the weighting of rays for the backprojection.

	n_detectors (int [https://docs.python.org/dev/library/functions.html#int], default None [https://docs.python.org/dev/library/constants.html#None]) – The number \(N_s\) of considered (equi-spaced)
detectors. If None [https://docs.python.org/dev/library/constants.html#None], \(N_s\) will be chosen as
\(\sqrt{N_x^2+N_y^2}\).

	detector_width (float [https://docs.python.org/dev/library/functions.html#float], default 2.0) – Physical length of the detector line.

	image_width (float [https://docs.python.org/dev/library/functions.html#float], default 2.0) – Physical size of the image indicated by the length of
the longer side of the rectangular image domain.
Choosing
image_width = detector_width results in
the standard Radon transform with each projection touching the
entire object, while img_width = 2 detector_width results
in each projection capturing only half of the image.

	midpoint_shift (list[float], default [0.0, 0.0]) – Two-dimensional vector representing the
shift of the image away from center of rotation.
Defaults to the application of no shift.

	detector_shift (list[float], default 0.0) – Physical shift of the detector along
the detector line in detector pixel offsets. Defaults to
the application of no shift, i.e., the detector reaches from
[- detector_width/2, detector_width/2].

	Returns:

	Struct dictionary with the following variables as entries,
where the keys are strings of the same names:

	Return type:

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	Variables:

	
	ofs_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary containing the relevant angular information as
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] for the data types numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32]
and numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64].
The arrays have dimension \((8, N_a)\) with columns:

	0

	weighted cosine

	1

	weighted sine

	2

	detector offset

	3

	inverse of cosine/sine

	4

	angular weight

	5

	flipped

The remaining columns are unused.
The value flipped indicates whether the x and y
axis are flipped (1) or not (0), which is done for
reasons of numerical stability.
The 4th entry contains the inverse of sine if the axes
are flipped and the inverse of cosine otherwise.

	shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]) – Tuple of integers \((N_x,N_y)\) representing the size
of the image.

	sinogram_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]) – Tuple of integers \((N_s,N_a)\) representing the size
of the sinogram.

	geo_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary mapping the allowed data types
to an array containing the values
[\(\delta_x, \delta_s, N_x, N_y, N_s, N_a\)].

	angles_diff_buf – Dictionary containing the
same values as in ofs_dict [4] representing the weights
associated with the angles (i.e., the length of sinogram
pixels in the angular direction).

	
gratopy.fanbeam(sino, img, projectionsetting, wait_for=[])

	Performs the fanbeam transform of a given image using the
given projectionsetting.

	Parameters:

	
	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The array in which the resulting sinogram is written.

	img (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The image to transform.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the
fanbeam transform is performed.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the computation
in order to avoid, e.g., race conditions, see pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event].
This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	Event associated with the computation of the
fanbeam transform (which is also added to the events of sino).

	Return type:

	pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event]

	
gratopy.fanbeam_ad(img, sino, projectionsetting, wait_for=[])

	Performs the fanbeam backprojection of a given sinogram using
the given projectionsetting.

	Parameters:

	
	img (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The array in which the resulting backprojection is
written.

	sino (pyopencl.array.Array [https://documen.tician.de/pyopencl/array.html#pyopencl.array.Array]) – The sinogram to transform.

	projectionsetting (gratopy.ProjectionSettings) – The geometry settings for which the
fanbeam backprojection is performed.

	wait_for (list[pyopencl.Event], default []) – The events to wait for before performing the computation
in order to avoid, e.g., race conditions, see pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event].
This program will always wait for img.events
and sino.events (so you need not add them to wait_for).

	Returns:

	Event associated with the computation of the fanbeam
backprojection
(which is also added to the events of img).

	Return type:

	pyopencl.Event [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.Event]

	
gratopy.fanbeam_struct(queue, img_shape, angles, detector_width, source_detector_dist, source_origin_dist, angle_weights, n_detectors=None, detector_shift=0.0, image_width=None, midpoint_shift=[0, 0], reverse_detector=False)

	Creates the structure storing geometry information required for
the fanbeam transform and its adjoint.

	Parameters:

	
	queue (pyopencl.CommandQueue [https://documen.tician.de/pyopencl/runtime_queue.html#pyopencl.CommandQueue]) – OpenCL command queue in which context the
computations are to be performed.

	img_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] \((N_x,N_y)\)) – The number of pixels of the image in x- and
y-direction respectively, i.e., the image size.
It is assumed that by default, the center of rotation is in
the middle of the grid of quadratic pixels. The midpoint can,
however, be shifted, see the midpoint_shift parameter.

	angles (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Determines which angles are considered for the
projection.

	detector_width (float [https://docs.python.org/dev/library/functions.html#float], default 2.0) – Physical length of the detector line.

	source_detector_dist (float [https://docs.python.org/dev/library/functions.html#float]) – Physical (orthogonal) distance R from
the source to the detector line.

	source_origin_dist (float [https://docs.python.org/dev/library/functions.html#float]) – Physical distance RE from the source to the
origin (center of rotation).

	angle_weights (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The weights associated to the angles, e.g.,
how much of the angular range is covered by this angle.
This impacts the weighting of rays for the backprojection.

	n_detectors (int [https://docs.python.org/dev/library/functions.html#int] or None [https://docs.python.org/dev/library/constants.html#None], default None [https://docs.python.org/dev/library/constants.html#None]) – The number \(N_s\) of considered (equi-spaced)
detectors. If None [https://docs.python.org/dev/library/constants.html#None], \(N_s\) will be chosen as
\(\sqrt{N_x^2+N_y^2}\).

	detector_shift (list[float], default 0.0) – Physical shift of the detector along
the detector line in detector pixel offsets. Defaults to
the application of no shift, i.e., the detector reaches from
[- detector_width/2, detector_width/2].

	image_width (float [https://docs.python.org/dev/library/functions.html#float], default None [https://docs.python.org/dev/library/constants.html#None]) – Physical size of the image indicated by the length of
the longer side of the rectangular image domain.
If None [https://docs.python.org/dev/library/constants.html#None], image_width is chosen to capture just
all rays.

	midpoint_shift (list[float], default [0.0, 0.0]) – Two-dimensional vector representing the
shift of the image away from center of rotation.
Defaults to the application of no shift.

	reverse_detector (bool [https://docs.python.org/dev/library/functions.html#bool], default False [https://docs.python.org/dev/library/constants.html#False]) – When True [https://docs.python.org/dev/library/constants.html#True], the detector direction
is flipped.

	Returns:

	Struct dictionary with the following variables as entries,
where the keys are strings of the same names:

	Return type:

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	Variables:

	
	img_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]) – Tuple of integers \((N_x,N_y)\) representing the size
of the image.

	sinogram_shape (tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]) – Tuple of integers \((N_s,N_a)\) representing the size
of the sinogram.

	ofs_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary containing the relevant angular information as
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] for the data types numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32]
and numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64].
The arrays have dimension \((8, N_a)\) with columns:

	0 1

	vector of length \(\delta_s\)
pointing in positive detector direction

	2 3

	vector connecting source and center of
rotation

	4 5

	vector connection the origin and its
projection onto the detector line

	6

	angular weight

The remaining column is unused.

	sdpd_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary mapping numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32]
and numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64] to a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
representing the values \(\sqrt{(s^2+R^2)}\) for
the weighting in the fanbeam transform (weighted by
delta_ratio, i.e., \(\delta_s/\delta_x\)).

	image_width – Physical size of the image. Equal to the input
parameter if given, or to the determined image size if
image_width is None [https://docs.python.org/dev/library/constants.html#None] (see parameter
image_width).

	geo_dict (dict{numpy.dtype: numpy.ndarray}) – Dictionary mapping the allowed data types to an
array containing the values
[source detector distance/\(\delta_x\),
source origin distance/\(\delta_x\),
width of a detector_pixel relative to width of image_pixels
i.e. \(\delta_s\)/\(\delta_x\),
image midpoint x-coordinate (in pixels),
image midpoint y-coordinate (in pixels),
detector line midpoint (in detector-pixels),
\(N_x\), \(N_y\), \(N_s\),
\(N_a\), width of an image pixel (\(\delta_x\))].

	angles_diff (dict{numpy.dtype: numpy.ndarray}) – Dictionary containing the
same values as in ofs_dict [6] representing the weights
associated with the angles (i.e., the length of sinogram
pixels in the angular direction).

	
gratopy.create_code()

	Reads and creates CL code containing all OpenCL kernels
of the gratopy toolbox.

	Returns:

	The toolbox’s CL code.

	Return type:

	str [https://docs.python.org/dev/library/stdtypes.html#str]

Acknowledgements

Authors, publications and funding

Authors

	Kristian Bredies, University of Graz, kristian.bredies@uni-graz.at

	Richard Huber, University of Graz, richard.huber@uni-graz.at

Publications

If you find the toolbox useful, please cite the following associated publications.

	Kristian Bredies and Richard Huber. (2021). Convergence analysis of pixel-driven Radon and fanbeam transforms. SIAM Journal on Numerical Analysis 59(3), 1399–1432. https://doi.org/10.1137/20M1326635.

	Kristian Bredies and Richard Huber. (2021). Gratopy 0.1 [Software]. Zenodo. https://doi.org/10.5281/zenodo.5221442

Funding

The development of this software was supported by the following projects:

	Regularization Graphs for Variational Imaging, funded by the Austrian Science Fund (FWF), grant P-29192,

	International Research Training Group IGDK 1754 Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures, funded by the German Research Council (DFG) and the Austrian Science Fund (FWF), grant W-1244.

Used data sets and code

The walnut data set included in this toolbox is licensed under CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/] and available on Zenodo [https://zenodo.org]:

	Keijo Hämäläinen, Lauri Harhanen, Aki Kallonen, Antti Kujanpää, Esa Niemi and Samuli Siltanen. (2015). Tomographic X-ray data of a walnut (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1254206

The phantom creation code is based on Phantominator [https://github.com/mckib2/phantominator], copyright by its contributors and licensed under GPLv3 [https://github.com/mckib2/phantominator/blob/master/LICENSE]. See https://github.com/mckib2/phantominator.

License

GNU GENERAL PUBLIC LICENSE Version 3 [https://github.com/kbredies/gratopy/blob/master/LICENSE]

 Python Module Index

 g |
 t

 		 	

 		
 g	

 	
 	
 gratopy	

 		 	

 		
 t	

 	[image: -]
 	
 tests	

 	
 	
 tests.test_fanbeam	

 	
 	
 tests.test_radon	

Index

 B
 | C
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

B

 	
 	backprojection() (in module gratopy)

C

 	
 	conjugate_gradients() (in module gratopy)

 	
 	create_code() (in module gratopy)

 	create_sparse_matrix() (gratopy.ProjectionSettings method)

F

 	
 	fanbeam() (in module gratopy)

 	fanbeam_ad() (in module gratopy)

 	
 	fanbeam_struct() (in module gratopy)

 	forwardprojection() (in module gratopy)

G

 	
 	
 gratopy

 	module

L

 	
 	landweber() (in module gratopy)

M

 	
 	
 module

 	gratopy

 	tests.test_fanbeam

 	tests.test_radon

N

 	
 	normest() (in module gratopy)

P

 	
 	phantom() (in module gratopy)

 	
 	ProjectionSettings (class in gratopy)

R

 	
 	radon() (in module gratopy)

 	
 	radon_ad() (in module gratopy)

 	radon_struct() (in module gratopy)

S

 	
 	show_geometry() (gratopy.ProjectionSettings method)

T

 	
 	test_adjointness() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	test_angle_input_variants() (in module tests.test_radon)

 	test_conjugate_gradients() (in module tests.test_fanbeam)

 	test_create_sparse_matrix() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	test_geometric_orientation() (in module tests.test_fanbeam)

 	test_landweber() (in module tests.test_fanbeam)

 	test_limited_angles() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	test_midpoint_shift() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	test_nonquadratic() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	
 	test_projection() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	test_range_check_walnut() (in module tests.test_fanbeam)

 	test_total_variation() (in module tests.test_fanbeam)

 	test_types_contiguity() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	test_weighting() (in module tests.test_fanbeam)

 	(in module tests.test_radon)

 	
 tests.test_fanbeam

 	module

 	
 tests.test_radon

 	module

 	total_variation() (in module gratopy)

W

 	
 	weight_sinogram() (in module gratopy)

 _images/phantom-1.png
Generated Phantom

_images/radon-1.png

_images/figure-1.png
100

50

-50

-100

Geometry chosen by gratopy as: 57.47

-100

-50 0 50

100

100

50

-50

-100

Geometry for hand-chosen image_width as: 80.00

-100

-50 0 50

100

_images/landweber.png

_images/walnut_sinogram.png

_images/sinogram-1.png
Sinogram

150

200

250 4

_images/total_variation.png

_static/file.png

_images/backprojection-1.png
Backprojection

50

100

150

200

250

_images/fanbeam-1.png
\
\\
. Z
source ‘

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to gratopy’s documentation!

 		
 Installation

 		
 Installation in Python

 		
 Testing correct installation

 		
 Requirements

 		
 Getting started

 		
 Basic principles of gratopy

 		
 ProjectionSettings

 		
 Images in gratopy

 		
 Sinograms in gratopy

 		
 Adjointness in gratopy

 		
 First example: Radon transform

 		
 Second example: Fanbeam transform

 		
 Test examples

 		
 Radon transform

 		
 test_projection()

 		
 test_types_contiguity()

 		
 test_weighting()

 		
 test_adjointness()

 		
 test_nonquadratic()

 		
 test_limited_angles()

 		
 test_angle_input_variants()

 		
 test_midpoint_shift()

 		
 test_create_sparse_matrix()

 		
 Fanbeam transform

 		
 test_projection()

 		
 test_types_contiguity()

 		
 test_weighting()

 		
 test_adjointness()

 		
 test_nonquadratic()

 		
 test_limited_angles()

 		
 test_midpoint_shift()

 		
 test_geometric_orientation()

 		
 test_range_check_walnut()

 		
 test_landweber()

 		
 test_conjugate_gradients()

 		
 test_total_variation()

 		
 test_create_sparse_matrix()

 		
 Function reference

 		
 Definition of geometry

 		
 ProjectionSettings

 		
 Transforms

 		
 forwardprojection()

 		
 backprojection()

 		
 Solvers

 		
 landweber()

 		
 conjugate_gradients()

 		
 total_variation()

 		
 normest()

 		
 weight_sinogram()

 		
 Data generation

 		
 phantom()

 		
 Internal functions

 		
 radon()

 		
 radon_ad()

 		
 radon_struct()

 		
 fanbeam()

 		
 fanbeam_ad()

 		
 fanbeam_struct()

 		
 create_code()

 		
 Acknowledgements

 		
 Authors, publications and funding

 		
 Authors

 		
 Publications

 		
 Funding

 		
 Used data sets and code

 		
 License

_static/plus.png

